
c-lightning
Release v0.9.0-45-g723b722-modded

August 08, 2020

User Documentation

1 Install 1

2 Setting up TOR with c-lightning 9

3 FAQ 17

4 Plugins 21

5 Hacking 41

6 Care And Feeding of Your Fellow Coders 47

7 Release checklist 53

8 Changelog 57

9 lightning-autocleaninvoice – Set up auto-delete of expired invoice 79

10 lightning-check – Command for verifying parameters 81

11 lightning-checkmessage – Command to check a signature is from a node 83

12 lightning-cli – Control lightning daemon 85

13 lightning-close – Command for closing channels with direct peers 87

14 lightning-connect – Command for connecting to another lightning node 89

15 lightning-createonion – Low-level command to create a custom onion 91

16 lightning-decodepay – Command for decoding a bolt11 string (low-level) 95

17 lightning-delexpiredinvoice – Command for removing expired invoices 97

18 lightning-delinvoice – Command for removing an invoice 99

19 lightning-dev-sendcustommsg – Low-level interface to send protocol messages to peers 101

20 lightning-disconnect – Command for disconnecting from another lightning node 103

i

21 lightning-feerates – Command for querying recommended onchain feerates 105

22 lightning-fundchannel – Command for establishing a lightning channel 109

23 lightning-fundchannel_cancel – Command for completing channel establishment 111

24 lightning-fundchannel_complete – Command for completing channel establishment 113

25 lightning-fundchannel_start – Command for initiating channel establishment for a lightning channel 115

26 lightning-fundpsbt – Command to populate PSBT inputs from the wallet 117

27 lightning-getroute – Command for routing a payment (low-level) 119

28 lightning-getsharedsecret – Command for computing an ECDH 123

29 lightning-hsmtool – Tool for working with software HSM secrets of lightningd 125

30 lightning-invoice – Command for accepting payments 127

31 lightning-keysend – Send funds to a node without an invoice 129

32 lightning-listchannels – Command to query active lightning channels in the entire network 133

33 lightning-listforwards – Command showing all htlcs and their information 135

34 lightning-listfunds – Command showing all funds currently managed by the c-lightning node 137

35 lightning-listinvoices – Command for querying invoice status 139

36 lightning-listpays – Command for querying payment status 141

37 lightning-listpeers – Command returning data on connected lightning nodes 143

38 lightning-listsendpays – Low-level command for querying sendpay status 147

39 lightning-newaddr – Command for generating a new address to be used by c-lightning 149

40 lightning-pay – Command for sending a payment to a BOLT11 invoice 151

41 lightning-plugin – Manage plugins with RPC 155

42 lightning-reserveinputs – Construct a transaction and reserve the UTXOs it spends 157

43 lightning-sendonion – Send a payment with a custom onion packet 159

44 lightning-sendpay – Low-level command for sending a payment via a route 161

45 lightning-setchannelfee – Command for setting specific routing fees on a lightning channel 163

46 lightning-signmessage – Command to create a signature from this node 165

47 lightning-txdiscard – Abandon a transaction from txprepare, release inputs 167

48 lightning-txprepare – Command to prepare to withdraw funds from the internal wallet 169

49 lightning-txsend – Command to sign and send transaction from txprepare 171

50 lightning-unreserveinputs – Release reserved UTXOs 173

ii

51 lightning-waitanyinvoice – Command for waiting for payments 175

52 lightning-waitblockheight – Command for waiting for blocks on the blockchain 177

53 lightning-waitinvoice – Command for waiting for specific payment 179

54 lightning-waitsendpay – Command for sending a payment via a route 181

55 lightning-withdraw – Command for withdrawing funds from the internal wallet 183

56 lightningd – Daemon for running a Lightning Network node 185

57 lightningd-config – Lightning daemon configuration file 189

iii

iv

CHAPTER 1

Install

1. Library Requirements

2. Ubuntu

3. Fedora

4. FreeBSD

5. NixOS

6. macOS

7. Android

8. Raspberry Pi

9. Armbian

10. Alpine

11. Additional steps

1.1 Library Requirements

You will need several development libraries:

• libsqlite3: for database support.

• libgmp: for secp256k1

• zlib: for compression routines.

For actually doing development and running the tests, you will also need:

• pip3: to install python-bitcoinlib

• valgrind: for extra debugging checks

1

c-lightning, Release v0.9.0-45-g723b722-modded

You will also need a version of bitcoind with segregated witness and estimatesmartfee with ECONOMICAL
mode support, such as the 0.16 or above.

1.2 To Build on Ubuntu

OS version: Ubuntu 15.10 or above

Get dependencies:

sudo apt-get update
sudo apt-get install -y \

autoconf automake build-essential git libtool libgmp-dev \
libsqlite3-dev python3 python3-mako net-tools zlib1g-dev libsodium-dev \
gettext

If you don’t have Bitcoin installed locally you’ll need to install that as well. It’s now available via snapd.

sudo apt-get install snapd
sudo snap install bitcoin-core
Snap does some weird things with binary names; you'll
want to add a link to them so everything works as expected
sudo ln -s /snap/bitcoin-core/current/bin/bitcoin{d,-cli} /usr/local/bin/

Clone lightning:

git clone https://github.com/ElementsProject/lightning.git
cd lightning

For development or running tests, get additional dependencies:

sudo apt-get install -y valgrind python3-pip libpq-dev
sudo pip3 install -r requirements.txt

Build lightning:

./configure
make
sudo make install

Running lightning:

bitcoind &
./lightningd/lightningd &
./cli/lightning-cli help

Note: You may need to include testnet=1 in bitcoin.conf

1.3 To Build on Fedora

OS version: Fedora 27 or above

Get dependencies:

2 Chapter 1. Install

https://snapcraft.io/bitcoin-core

c-lightning, Release v0.9.0-45-g723b722-modded

$ sudo dnf update -y && \
sudo dnf groupinstall -y \

'C Development Tools and Libraries' \
'Development Tools' && \

sudo dnf install -y \
clang \
gettext \
git \
gmp-devel \
libsq3-devel \
python3-devel \
python3-pip \
python3-setuptools \
net-tools \
valgrind \
wget \
zlib-devel \

libsodium-devel && \
sudo dnf clean all

Make sure you have bitcoind available to run

Clone lightning:

$ git clone https://github.com/ElementsProject/lightning.git
$ cd lightning

Build and install lightning:

$lightning> ./configure
$lightning> make
$lightning> sudo make install

Running lightning (mainnet):

$ bitcoind &
$ lightningd --network=bitcoin

Running lightning on testnet:

$ bitcoind -testnet &
$ lightningd --network=testnet

1.4 To Build on FreeBSD

OS version: FreeBSD 11.1-RELEASE or above

c-lightning is in the FreeBSD ports, so install it as any other port (dependencies are handled automatically):

pkg install c-lightning

for a binary, pre-compiled package. If you want to compile locally and fiddle with compile time options:

cd /usr/ports/net-p2p/c-lightning && make install

mrkd is required to build man pages from markdown files (not done by the port):

1.4. To Build on FreeBSD 3

https://github.com/bitcoin/bitcoin

c-lightning, Release v0.9.0-45-g723b722-modded

cd /usr/ports/devel/py-pip && make install
$ pip install --user mrkd

See /usr/ports/net-p2p/c-lightning/Makefile for instructions on how to build from an arbitrary git
commit, instead of the latest release tag.

Note: Make sure you’ve set an utf-8 locale, e.g. export LC_CTYPE=en_US.UTF-8, otherwise manpage instal-
lation may fail.

Running lightning:

Configure bitcoind, if not already: add rpcuser=<foo> and rpcpassword=<bar> to /usr/local/etc/
bitcoin.conf, maybe also testnet=1.

Configure lightningd: copy /usr/local/etc/lightningd-bitcoin.conf.sample to /usr/local/
etc/lightningd-bitcoin.conf and edit according to your needs.

service bitcoind start
service lightningd start
lightning-cli --rpc-file /var/db/c-lightning/bitcoin/lightning-rpc --lightning-dir=/
→˓var/db/c-lightning help

1.5 To Build on NixOS

Use nix-shell launch a shell with a full clightning dev environment:

$ nix-shell -Q -p gdb sqlite autoconf git clang libtool gmp sqlite autoconf \
autogen automake libsodium 'python3.withPackages (p: [p.bitcoinlib])' \
valgrind --run make

1.6 To Build on macOS

Assuming you have Xcode and Homebrew installed. Install dependencies:

$ brew install autoconf automake libtool python3 gmp gnu-sed gettext libsodium
$ ln -s /usr/local/Cellar/gettext/0.20.1/bin/xgettext /usr/local/opt
$ export PATH="/usr/local/opt:$PATH"

If you need SQLite (or get a SQLite mismatch build error):

$ brew install sqlite
$ export LDFLAGS="-L/usr/local/opt/sqlite/lib"
$ export CPPFLAGS="-I/usr/local/opt/sqlite/include"

If you need Python 3.x for mako (or get a mako build error):

$ brew install pyenv
$ echo -e 'if command -v pyenv 1>/dev/null 2>&1; then\n eval "$(pyenv init -)"\nfi' >
→˓> ~/.bash_profile
$ source ~/.bash_profile
$ pyenv install 3.7.4
$ pip install --upgrade pip

If you don’t have bitcoind installed locally you’ll need to install that as well:

4 Chapter 1. Install

c-lightning, Release v0.9.0-45-g723b722-modded

$ brew install berkeley-db4 boost miniupnpc pkg-config libevent
$ git clone https://github.com/bitcoin/bitcoin
$ cd bitcoin
$./autogen.sh
$./configure
$ make src/bitcoind src/bitcoin-cli && make install

Clone lightning:

$ git clone https://github.com/ElementsProject/lightning.git
$ cd lightning

Configure Python 3.x & get mako:

$ pyenv local 3.7.4
$ pip install mako

Build lightning:

$./configure
$ make

Running lightning:

Note: Edit your ~/Library/Application\ Support/Bitcoin/bitcoin.conf to include
rpcuser=<foo> and rpcpassword=<bar> first, you may also need to include testnet=1

bitcoind &
./lightningd/lightningd &
./cli/lightning-cli help

1.7 To cross-compile for Android

Make a standalone toolchain as per https://developer.android.com/ndk/guides/standalone_toolchain.html. For c-
lightning you must target an API level of 24 or higher.

Depending on your toolchain location and target arch, source env variables such as:

export PATH=$PATH:/path/to/android/toolchain/bin
Change next line depending on target device arch
target_host=arm-linux-androideabi
export AR=$target_host-ar
export AS=$target_host-clang
export CC=$target_host-clang
export CXX=$target_host-clang++
export LD=$target_host-ld
export STRIP=$target_host-strip

Two makefile targets should not be cross-compiled so we specify a native CC:

make CC=clang clean ccan/tools/configurator/configurator
make clean -C ccan/ccan/cdump/tools \

&& make CC=clang -C ccan/ccan/cdump/tools

Install the qemu-user package. This will allow you to properly configure the build for the target device environment.
Build with:

1.7. To cross-compile for Android 5

c-lightning, Release v0.9.0-45-g723b722-modded

BUILD=x86_64 MAKE_HOST=arm-linux-androideabi \
make PIE=1 DEVELOPER=0 \
CONFIGURATOR_CC="arm-linux-androideabi-clang -static"

1.8 To cross-compile for Raspberry Pi

Obtain the official Raspberry Pi toolchains. This document assumes compilation will occur towards the Raspberry Pi
3 (arm-linux-gnueabihf as of Mar. 2018).

Depending on your toolchain location and target arch, source env variables will need to be set. They can be set from
the command line as such:

export PATH=$PATH:/path/to/arm-linux-gnueabihf/bin
Change next line depending on specific Raspberry Pi device
target_host=arm-linux-gnueabihf
export AR=$target_host-ar
export AS=$target_host-as
export CC=$target_host-gcc
export CXX=$target_host-g++
export LD=$target_host-ld
export STRIP=$target_host-strip

Install the qemu-user package. This will allow you to properly configure the build for the target device environment.
Config the arm elf interpreter prefix:

export QEMU_LD_PREFIX=/path/to/raspberry/arm-bcm2708/arm-rpi-4.9.3-linux-gnueabihf/
→˓arm-linux-gnueabihf/sysroot/

Obtain and install cross-compiled versions of sqlite3, gmp and zlib:

Download and build zlib:

wget https://zlib.net/zlib-1.2.11.tar.gz
tar xvf zlib-1.2.11.tar.gz
cd zlib-1.2.11
./configure --prefix=$QEMU_LD_PREFIX
make
make install

Download and build sqlite3:

wget https://www.sqlite.org/2018/sqlite-src-3260000.zip
unzip sqlite-src-3260000.zip
cd sqlite-src-3260000
./configure --enable-static --disable-readline --disable-threadsafe --disable-load-
→˓extension --host=$target_host --prefix=$QEMU_LD_PREFIX
make
make install

Download and build gmp:

wget https://gmplib.org/download/gmp/gmp-6.1.2.tar.xz
tar xvf gmp-6.1.2.tar.xz
cd gmp-6.1.2
./configure --disable-assembly --host=$target_host --prefix=$QEMU_LD_PREFIX

(continues on next page)

6 Chapter 1. Install

https://github.com/raspberrypi/tools

c-lightning, Release v0.9.0-45-g723b722-modded

(continued from previous page)

make
make install

Then, build c-lightning with the following commands:

./configure
make

1.9 To compile for Armbian

For all the other Pi devices out there, consider using Armbian.

You can compile in customize-image.sh using the instructions for Ubuntu.

A working example that compiles both bitcoind and c-lightning for Armbian can be found here.

1.10 To compile for Alpine

Get dependencies:

apk update
apk add ca-certificates alpine-sdk autoconf automake git libtool \

gmp-dev sqlite-dev python python3 py3-mako net-tools zlib-dev libsodium gettext

Clone lightning:

git clone https://github.com/ElementsProject/lightning.git
cd lightning
git submodule update --init

Build and install:

./configure
make
make install

Clean up:

cd .. && rm -rf lightning
apk del ca-certificates alpine-sdk autoconf automake git libtool \

gmp-dev sqlite python3 py3-mako net-tools zlib-dev libsodium gettext

1.11 Additional steps

Go to README for more information how to create an address, add funds, connect to a node, etc.

1.9. To compile for Armbian 7

https://www.armbian.com
https://github.com/Sjors/armbian-bitcoin-core
https://github.com/ElementsProject/lightning/blob/master/README

c-lightning, Release v0.9.0-45-g723b722-modded

8 Chapter 1. Install

CHAPTER 2

Setting up TOR with c-lightning

To use any Tor features with c-lightning you must have Tor installed and running.

Please note that nodes with V3 onion address i.e vww6ybal4bd7szmgncyruucpgfkqahzddi37ktceo3ah7ngmcopnpyyd.
onion will not be reachable over Tor if your Tor version is below 0.3.2.2-alpha

Connections to nodes with old Tor V2 address form with less than 10 char prefix before .onion
i.e.3fyb44wdhnd2ghhl.onion should work with any version of Tor.

You can check your installed Tor version with tor --version or sudo tor --version

If Tor is not installed you can install it on Debian based Linux systems (Ubuntu, Debian, etc) with the following
command:

sudo apt install tor

then /etc/init.d/tor start or sudo systemctl start tor depending on your system configuration.

Most default setting should be sufficient.

To keep a safe configuration for minimal harassment (See Tor FAQ) just check that this line is present in the Tor config
file /etc/tor/torrc:

ExitPolicy reject *:* # no exits allowed

This does not affect c-lightning connect, listen, etc.. It will only prevent your node from becoming a Tor exit node.
Only enable this if you are sure about the implications.

If you don’t want to create .onion addresses this should be enough.

There are several ways by which a c-lightning node can accept or make connections over Tor.

The node can be reached over Tor by connecting to its .onion address.

To provide the node with a .onion address you can:

• create a non-persistent address with an auto service or

• create a persistent address with a hidden service.

9

https://www.torproject.org/docs/faq.html.en#WhatIsTor

c-lightning, Release v0.9.0-45-g723b722-modded

2.1 Quick Start On Linux

It is easy to create a single persistent Tor address and not announce a public IP. This is ideal for most setups where
you have an ISP-provided router connecting your Internet to your local network and computer, as it does not require a
stable public IP from your ISP (which might not give one to you for free), nor port forwarding (which can be hard to
set up for random cheap router models). Tor provides NAT-traversal for free, so even if you or your ISP has a complex
network between you and the Internet, as long as you can use Tor you can be connected to.

On most Linux distributions, making a standard installation of tor will automatically set it up to have a SOCKS5
proxy at port 9050. As well, you have to set up the Tor Control Port. On most Linux distributions there will be
commented-out settings below in the /etc/tor/torrc:

ControlPort 9051
CookieAuthentication 1
CookieAuthFileGroupReadable 1

Uncomment those in, then restart tor (usually systemctl restart tor or sudo systemctl restart
tor on most SystemD-based systems, including recent Debian and Ubuntu, or just restart the entire computer if you
cannot figure it out).

Then add these to your ${LIGHTNING_DIR}/config or other C-Lightning configuration (or prepend -- to each
of them and add them to your lightningd invocation command line):

proxy=127.0.0.1:9050
bind-addr=127.0.0.1:9735
addr=statictor:127.0.0.1:9051
always-use-proxy=true

1. proxy informs C-Lightning that you have a SOCKS5 proxy at port 9050. C-Lightning will assume that this is
a Tor proxy, port 9050 is the default in most Linux distributions; you can double-check /etc/tor/torrc for
a SocksPort entry to confirm the port number.

2. bind-addr informs C-Lightning to bind itself to port 9735. This is needed for the subsequent statictor
to work. 9735 is the normal Lightning Network port. This has to appear before any statictor: setting.

3. addr=statictor: informs C-Lightning that you want to create a persistent hidden service that is based
on your node private key. This informs C-Lightning as well that the Tor Control Port is 9051. You can also
use bind-addr=statictor: instead to not announce the persistent hidden service, but if anyone wants
to make a channel with you, you either have to connect to them, or you have to reveal your address to them
explicitly (i.e. autopilots and the like will likely never connect to you).

4. always-use-proxy informs C-Lightning to always use Tor even when connecting to nodes with public IPs.
You can set this to false or remove it, if you are not privacy-conscious and find Tor is too slow for you.

2.2 Tor Browser and Orbot

It is possible to not install Tor on your computer, and rely on just Tor Browser. Tor Browser will run a built-in Tor
instance, but with the proxy at port 9150 and the control port at 9151 (the normal Tor has, by default, the proxy at port
9050 and the control port at 9051). The mobile Orbot uses the same defaults as Tor Browser (9150 and 9151).

You can then use these settings for C-Lightning:

proxy=127.0.0.1:9150
bind-addr=127.0.0.1:9735
addr=statictor:127.0.0.1:9151
always-use-proxy=true

10 Chapter 2. Setting up TOR with c-lightning

c-lightning, Release v0.9.0-45-g723b722-modded

You will have to run C-Lightning after launching Tor Browser or Orbot, and keep Tor Browser or Orbot open as long
as C-Lightning is running, but this is a setup which allows others to connect and fund channels to you, anywhere (no
port forwarding! works wherever Tor works!), and you do not have to do anything more complicated than download
and install Tor Browser. This may be useful for operating system distributions that do not have Tor in their repositories,
assuming we can ever get C-Lightning running on those.

2.3 Detailed Discussion

2.3.1 Creation of an auto service for non-persistent .onion addresses

To provide the node a non-persistent .onion address it is necessary to access the Tor auto service. These types of
addresses change each time the Tor service is restarted.

NOTE:If the node is required to be reachable only by persistent .onion addresses, this part can be skipped and it is
necessary to set up a hidden service with the steps outlined in the next section.

To create and use the auto service follow these steps:

Edit the Tor config file /etc/tor/torrc

You can configure the service authenticated by cookie or by password:

Service authenticated by cookie

Add the following lines in the /etc/tor/torrc file:

ControlPort 9051
CookieAuthentication 1
CookieAuthFileGroupReadable 1

Service authenticated by password

Alternatively, you can set the authentication to the service with a password by following these steps:

1. Create a hash of your password with

tor --hash-password yourpassword

This returns a line like

16:533E3963988E038560A8C4EE6BBEE8DB106B38F9C8A7F81FE38D2A3B1F

1. put these lines in the /etc/tor/torrc file:

ControlPort 9051
HashedControlPassword 16:533E3963988E038560A8C4EE6BBEE8DB106B38F9C8A7F81FE38D2A3B1F

Save the file and restart the Tor service. In linux:

/etc/init.d/tor restart or sudo systemctl start tor depending on the configuration of your sys-
tem.

The auto service is used by adding --addr=autotor:127.0.0.1:9051 if you want the address to be public or
--bind-addr=autotor:127.0.0.1:9051 if you don’t want to publish it.

2.3. Detailed Discussion 11

c-lightning, Release v0.9.0-45-g723b722-modded

In the case where the auto service is authenticated through a password, it will be necessary to add the option
--tor-service-password=yourpassword (not the hash).

The created non-persistent .onion address will be shown by the lightning-cli getinfo command. The other
nodes will be able to connect to this .onion address through the 9735 port.

2.3.2 Creation of a hidden service for a persistent .onion address

To have a persistent .onion address other nodes can connect to, it is necessary to set up a Tor Hidden Service.

NOTE: In the case where only non-persistent addresses are required, you don’t have to create the hidden service and
you can skip this part.

Automatic persistent .onion address

It is possible to generate persistent .onion addresses automatically.

Add the following lines in the /etc/tor/torrc file (you might already have done this if for example you connected
Bitcoin over Tor):

ControlPort 9051
CookieAuthentication 1
CookieAuthFileGroupReadable 1

Then you can use --addr=statictor:127.0.0.1:9051 instead of --announce-addr=.
onionAddressV3. By default V3 onion addresses are generated.

Note that you have to specify a --bind-addr first before using --addr=statictor:. Generally
--bind-addr=127.0.0.1:9735 should work fine.

You can also have multiple persistent .onion addresses by adding /torblob=BLOB, where BLOB is 32 to 64 random
bytes of text. Note that this blob will be used to derive the secret key behind the .onion address and you should keep
the blob secret otherwise anyone who steals it can spoof your .onion address and block incoming data to your node
via this .onion address. You can then specify multiple statictor: options with different BLOBs.

However, even if you have multiple persistent addresses, you can only announce up to one each of a Tor V2 and a Tor
V3 address. statictor: uses Tor V3 addresses by default. This is a limitation of the BOLT spec. It is still possible
for other nodes to contact you by those other hidden services.

Finally, the default external port number for the autogenerated persistent .onion address will be 9735, but you can
change this by adding /torport=9999 to change the external port for the .onion address.

Explicit Control

Add these lines in the /etc/tor/torrc file:

HiddenServiceDir /var/lib/tor/lightningd-service_v2/
HiddenServicePort 1234 127.0.0.1:9735

If you want to create a version 3 address, you must also add HiddenServiceVersion 3 so the whole section
will be:

HiddenServiceDir /var/lib/tor/lightningd-service_v3/
HiddenServiceVersion 3
HiddenServicePort 1234 127.0.0.1:9735

12 Chapter 2. Setting up TOR with c-lightning

https://www.torproject.org/docs/onion-services.html.en

c-lightning, Release v0.9.0-45-g723b722-modded

The hidden lightning service will be reachable at port 1234 (global port) of the .onion address, which will be created
at the restart of the Tor service. Both types of addresses can coexist on the same node.

Save the file and restart the Tor service. In linux:

/etc/init.d/tor restart or sudo systemctl start tor depending on the configuration of your sys-
tem.

You will find the newly created address with:

sudo cat /var/lib/tor/lightningd-service_v2/hostname

or

sudo cat /var/lib/tor/lightningd-service_v3/hostname

in the case of a version 3 Tor address.

Now you are able to create:

• Non-persistent version 2 .onion address via auto service (temp-v2)

• Persistent version 2 and version 3 .onion addresseses (v2 and v3).

Let’s see how to use them.

2.4 What do we support

| Case # | IP Number | Tor address |Incoming / Outgoing Tor | | ——- | ————- | ————————-
|————————- | 1 | Public | NO | Outgoing | | 2 | Public | v2 [1] | Incoming [4] | | 3 | Public | temp-v2 [2] |
Incoming | | 4 | Not Announced | v2 | Incoming | | 5 | Not Announced | temp-v2 | Incoming | | 6 | Public | v3 [3] +
temp-v2 | Incoming | | 7 | Not Announced | v3 + v2 + temp-v2 | Incoming | | 8 | Public | NO | Outcoing socks5 . |

NOTE:

1. v2: The Version 2 onion address is persistent across Tor service restarts. It is created when you create the Tor
Hidden Service.

2. temp-v2: The Version 2 onion address changes at each restart of the Tor service. A non-persistent .onion address
is generated by accessing an auto service.

3. All the v3 addresses refer to .onion addresses version 3.

4. In all the “Incoming” use case, the node can also make “Outgoing” Tor connections (connect to a .onion address)
by adding the --proxy=127.0.0.1:9050 option.

2.4.1 Case #1 c-lightning has a public IP address and no Tor hidden service ad-
dress, but can connect to an onion address via a Tor socks 5 proxy.

Without a .onion address, the node won’t be reachable through Tor by other nodes but it will always be able to
connect to a Tor enabled node (outbound connections), passing the connect request through the Tor service
socks5 proxy. When the Tor service starts it creates a socks5 proxy which is by default at the address 127.0.0.1:9050.

If the node is started with the option --proxy=127.0.0.1:9050 the node will be always able to connect to nodes
with .onion address through the socks5 proxy.

You can always add this option, also in the other use cases, to add outgoing Tor capabilities.

2.4. What do we support 13

https://blog.torproject.org/we-want-you-test-next-gen-onion-services

c-lightning, Release v0.9.0-45-g723b722-modded

If you want to connect to nodes ONLY via the Tor proxy, you have to add the --always-use-proxy=true
option.

You can announce your public IP address through the usual method:

--bind-addr=internalIPAddress:port --announce-addr=externalIpAddress

if the node is into an internal network

--addr=externalIpAddress

if the node is not inside an internal network.

TIP: If you are unsure which of the two is suitable for you, find your internal and external address and see if they
match.

In linux:

Discover your external IP address with: curl ipinfo.io/ip

and your internal IP Address with: ip route get 1 | awk '{print $NF;exit}'

If they match you can use the --addr command line option.

2.4.2 Case #2 c-lightning has a public IP address and a fixed Tor hidden service
address that is persistent, so that external users can connect to this node.

To have your external IP address and your .onion address announced, you use the

--bind-addr=yourInternalIPAddress:port --announce-addr=yourexternalIPAddress:port --
→˓announce-addr=your.onionAddress:port`

or

--bind-addr=yourInternalIPAddress:port --announce-addr=yourexternalIPAddress:port --
→˓addr=statictor:127.0.0.1:9051`

options.

If you are not inside an internal network you can use

--addr=yourIPAddress:port --announce-addr=your.onionAddress:port

or

--addr=yourIPAddress:port --addr=statictor:127.0.0.1:9051

your.onionAddress is the one created with the Tor hidden service (see above). The port is the one indicated as the
hidden service port. If the hidden service creation line is HiddenServicePort 1234 127.0.0.1:9735 the
.onion address will be reachable at the 1234 port (the global port).

For statictor the 127.0.0.1 is your computer, and 9051 is the Tor Control Port you set up in the /etc/tor/
torrc file.

It will be possible to connect to this node with:

lightning-cli connect nodeID .onionAddress globalPort

through Tor where .onion address is in the form xxxxxxxxxxxxxxxxxxxxxxxxxx.onion, Or

14 Chapter 2. Setting up TOR with c-lightning

c-lightning, Release v0.9.0-45-g723b722-modded

lightning-cli connect nodeID yourexternalIPAddress Port

through Clearnet.

2.4.3 Case #3 c-lightning has a public IP address and a non-persisten Tor service
address

In this case other nodes can connect to you via Clearnet or Tor.

To announce your IP address to the network, you add:

--bind-addr=internalAddress:port --announce-addr=yourExternalIPAddress

or --addr=yourExternalIPAddressif you are NOT on an internal network.

To get your non-persistent Tor address, add --addr=autotor:127.0.0.1:9051 if you want to announce it or
--bind-addr=autotor:127.0.0.1:9051 if you don’t want to announce it.

If the auto service is protected by password (see above) it is necessary to specify it with the option
--tor-service-password=yourpassword (not the hash).

You will obtain the generated non persisten .onion address by reading the results of the lightning-cli getinfo
command. Other nodes will be able to connect to the .onion address through the 9735 port.

2.4.4 Case #4 c-lightning has no public IP address, but has a fixed Tor hidden ser-
vice address that is persistent

Other nodes can connect to the announced .onion address created with the hidden service (see above).

In this case In the lightningd command line you will specify:

--bind-addr=yourInternalIPAddress:port --announce-addr=your.onionAddress:port

or --addr=your.onionAddress:port if you are NOT on an internal network.

2.4.5 Case #5 c-lightning has no public IP address, and has no fixed Tor hidden
service address

In this case it is difficult to track the node. You specify just:

--bind-addr=yourInternalIPAddress:port --addr=autotor:127.0.0.1:9051

In the lightningd command line.

Other nodes will not be able to connect to you unless you communicate them how to reach you. You will find your
.onion address with the command lightning-cli getinfo and the other nodes will be able to connect to it
through the 9735 port.

2.4.6 Case #6 c-lightning has a public IP address and a fixed Tor V3 service address
and a Tor V2 service address

You will be reachable via Clearnet, via Tor to the .onion V3 address and the .onion V2 address if this last is commu-
nicated to the node that wants to connect with our node.

2.4. What do we support 15

c-lightning, Release v0.9.0-45-g723b722-modded

to make your external IP address public you add:

--bind-addr=yourInternalAddress:port --announce-addr=yourexternalIPAddress:port`.

If the node is not on an internal network the option will be: --addr=yourexternalIPAddress:port.

Once the .onion addresses have been created with the procedures oulined above, the node is already reachable at the
.onion address.

To make your external .onion addresses public you add:

--announce-addr=.onionAddressV2:port --announce-addr=.onionAddressV3:port

to the options to publish your IP number.

2.4.7 Case #7 c-lightning has no public IP address, a fixed Tor V3 service address,
a fixed Tor V2 service address and also a 3rd non persisten V2 address

External users can connect to this node by Tor V2 and V3 and a random V2 until next tor release, then also (V3
randomly).

The Persistent addresses can be created with the steps outlined above.

To create your non-persistent Tor address, add --addr=autotor:127.0.0.1:9051 if you want to announce it
or --bind-addr=autotor:127.0.0.1:9051 if you don’t want to announce it.

Also you must specify --tor-service-password=yourpassword (not the hash) to access the Tor service at
9051 If you have protected them with the password (no additional options if they are protected with a cookie file. See
above).

To make your external .onion address (V2 and V3) public you add:

--bind-addr=yourInternalIPAddress:port --announce-addr=your.onionAddressV2:port --
→˓announce-addr=your.onionAddressV3:port

2.4.8 Case #8 c-lightning has a public IP address and no Tor addresses

The external address is communicated by the

--bind-addr=internalIPAddress:port --announce-addr=yourexternalIPAddress:port`

or --addr=yourexternalIPAddress:port if the node is not inside an internal network.

The node can connect to any V4/6 ip address via a IPV4/6 socks 5 proxy by specifing

--proxy=127.0.0.1:9050 --always-use-proxy=true

2.5 References

The Tor project

16 Chapter 2. Setting up TOR with c-lightning

https://www.torproject.org/

CHAPTER 3

FAQ

3.1 Table of contents

• General questions

• Loss of {funds / data}

3.2 General questions

3.2.1 I don’t know where to start, help me !

There is a C-lightning plugin specifically for this purpose, it’s called helpme.

Assuming you have followed the installation steps, have lightningd up and running, and lightning-cli in
your $PATH you can start the plugin like so:

Clone the plugins repository
git clone https://github.com/lightningd/plugins
Make sure the helpme plugin is executable (git should have already handled this)
chmod +x plugins/helpme/helpme.py
Install its dependencies (there is only one actually)
pip3 install --user -r plugins/helpme/requirements.txt
Then just start it :)
lightning-cli plugin start $PWD/plugins/helpme/helpme.py

The plugin registers a new command helpme which will guide you through the main components of C-lightning:

lightning-cli helpme

17

https://github.com/lightningd/plugins/tree/master/helpme

c-lightning, Release v0.9.0-45-g723b722-modded

3.2.2 How to get the balance of each channel ?

You can use the listfunds command and take a ratio of our_amount_msat over amount_msat. Note that
this doesn’t account for the channel reserve.

A better option is to use the summary plugin which nicely displays channel balances, along with other useful channel
informations.

3.2.3 My channel is in state STATE, what does that mean ?

See the listpeers command manpage.

3.2.4 My payment is failing / all my payments are failing, why ?

There are many reasons for a payment failure. The most common one is a failure along the route from you to the payee.
The best (and most common) solution to a route failure problem is to open more channels, which should increase the
available routes to the recipient and lower the probability of a failure.

Hint: use the pay command which is will iterate through trying all possible routes, instead of the low-level sendpay
command which only tries the passed in route.

3.2.5 How can I receive payments ?

In order to receive payments you need inbound liquidity. You get inbound liquidity when another node opens a channel
to you or by successfully completing a payment out through a channel you opened.

If you need a lot of inbound liquidity, you can use a service that trustlessly swaps on-chain Bitcoin for Lightning
channel capacity. There are a few online service providers that will create channels to you. A few of them charge fees
for this service. Note that if you already have a channel open to them, you’ll need to close it before requesting another
channel.

3.2.6 Are there any issues if my node changes its IP address? What happens to
the channels if it does?

There is no risk to your channels if your IP address changes. However, be sure to change your announced address (or
setup a TOR hidden service) in your config so that others can establish connections at your new address !

3.2.7 Can I have two hosts with the same public key and different IP addresses,
both online and operating at the same time?

No.

3.2.8 Can I use a single bitcoind for multiple lightningd ?

Yes. All bitcoind calls are handled by the bundled bcli plugin. lightningd does not use bitcoind’s wallet.
While on the topic, lightningd does not require the -txindex option on bitcoind.

If you use a single bitcoind for multiple lightningd’s, be sure to raise the bitcoind max RPC thread limit
(-rpcthreads), each lightningd can use up to 4 threads, which is the default bitcoind max.

18 Chapter 3. FAQ

https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md#rationale
https://github.com/lightningd/plugins/tree/master/summary
https://lightning.readthedocs.io/lightning-listpeers.7.html#return-value
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#failure-messages

c-lightning, Release v0.9.0-45-g723b722-modded

3.2.9 Can I use C-lightning on mobile ?

Remote control

Spark-wallet is the most popular remote control HTTP server for lightningd. Use it behind tor.

lightningd on Android

Effort has been made to get lightningd running on Android, see issue #3484. Currently unusable.

3.2.10 How to “backup my wallet” ?

As a Bitcoin user, one may be familiar with a file or a seed (or some mnemonics) from which it can recover all its
funds.

C-lightning has an internal bitcoin wallet, which you can use to make “on-chain” transactions, (see withdraw. These
on-chain funds are backed up via the HD wallet seed, stored in byte-form in hsm_secret.

and which you can backup thanks to a seed stored in the hsm_secret. lightningd also stores information for
funds locked in Lightning Network channels, which are stored in a database. This database is required for on-going
channel updates as well as channel closure. There is no single-seed backup for funds locked in channels.

While crucial for node operation, snapshot-style backups of the lightningd database is discouraged, as any loss
of state may result in permanent loss of funds. See the penalty mechanism for more information on why any amount
of state-loss results in fund loss.

Real-time database replication is the recommended approach to backing up node data. Tools for replication are cur-
rently in active development, using the db_write plugin hook.

3.3 Loss

3.3.1 Rescanning the block chain for lost utxos

There are 3 types of ‘rescans’ you can make:

• rescanblockchain: A bitcoind RPC call which rescans the blockchain starting at the given height. This
does not have an effect on c-lightning as lightningd tracks all block and wallet data independently.

• --rescan=depth: A lightningd configuration flag. This flag is read at node startup and tells lightningd
at what depth from current blockheight to rebuild its internal state. (You can specify an exact block to start
scanning from, instead of depth from current height, by using a negative number.)

• dev-rescan-outputs: A lightningd RPC call. Only available if your node has been configured and
built in DEVELOPER mode (i.e. ./configure --enable-developer) This will sync the state for
known UTXOs in the lightningd wallet with bitcoind. As it only operates on outputs already seen on
chain by the lightningd internal wallet, this will not find missing wallet funds.

3.3.2 Database corruption / channel state lost

If you lose data (likely corrupted lightningd.sqlite3) about a channel with option_static_remotekey
enabled, you can wait for your peer to unilateraly close the channel, then use tools/hsmtool with the
guesstoremote command to attempt to recover your funds from the peer’s published unilateral close transaction.

3.3. Loss 19

https://github.com/shesek/spark-wallet/
https://github.com/shesek/spark-wallet/blob/master/doc/onion
https://github.com/ElementsProject/lightning/issues/3484
https://lightning.readthedocs.io/lightning-withdraw.7.html
https://github.com/lightningnetwork/lightning-rfc/blob/master/05-onchain.md#revoked-transaction-close-handling
https://lightning.readthedocs.io/PLUGINS.html#db-write

c-lightning, Release v0.9.0-45-g723b722-modded

If option_static_remotekey was not enabled, you’re probably out of luck. The keys for your funds in your
peer’s unilateral close transaction are derived from information you lost. Fortunately, since version 0.7.3 chan-
nels are created with option_static_remotekey by default if your peer supports it. Which is to say that
channels created after block 598000 (short channel id starting with > 598000) have a high chance of supporting
option_static_remotekey.

You can verify it using the features field from the listpeers command’s result.

Here is an example in Python checking if one of the option_static_remotekey bits is set in the negotiated
features corresponding to 0x02aaa2:

>>> bool(0x02aaa2 & ((1 << 12) | (1 << 13)))
True

20 Chapter 3. FAQ

https://blockstream.info/block/0000000000000000000dd93b8fb5c622b9c903bf6f921ef48e266f0ead7faedb
https://lightning.readthedocs.io/lightning-listpeers.7.html
https://github.com/lightningnetwork/lightning-rfc/blob/master/09-features

CHAPTER 4

Plugins

Plugins are a simple yet powerful way to extend the functionality provided by c-lightning. They are subprocesses that
are started by the main lightningd daemon and can interact with lightningd in a variety of ways:

• Command line option passthrough allows plugins to register their own command line options that are exposed
through lightningd so that only the main process needs to be configured.

• JSON-RPC command passthrough adds a way for plugins to add their own commands to the JSON-RPC
interface.

• Event stream subscriptions provide plugins with a push-based notification mechanism about events from the
lightningd.

• Hooks are a primitive that allows plugins to be notified about internal events in lightningd and alter its
behavior or inject custom behaviors.

A plugin may be written in any language, and communicates with lightningd through the plugin’s stdin
and stdout. JSON-RPCv2 is used as protocol on top of the two streams, with the plugin acting as server and
lightningd acting as client. The plugin file needs to be executable (e.g. use chmod a+x plugin_name)

4.1 A day in the life of a plugin

During startup of lightningd you can use the --plugin= option to register one or more plugins that should be
started. In case you wish to start several plugins you have to use the --plugin= argument once for each plugin
(or --plugin-dir or place them in the default plugin dirs, usually /usr/local/libexec/c-lightning/
plugins and ~/.lightningd/plugins). An example call might look like:

lightningd --plugin=/path/to/plugin1 --plugin=path/to/plugin2

lightningd will run your plugins from the --lightning-dir/networkname, then will write JSON-RPC re-
quests to the plugin’s stdin and will read replies from its stdout. To initialize the plugin two RPC methods are
required:

21

c-lightning, Release v0.9.0-45-g723b722-modded

• getmanifest asks the plugin for command line options and JSON-RPC commands that should be passed
through. This can be run before lightningd checks that it is the sole user of the lightning-dir directory
(for --help) so your plugin should not touch files at this point.

• init is called after the command line options have been parsed and passes them through with the real values
(if specified). This is also the signal that lightningd’s JSON-RPC over Unix Socket is now up and ready to
receive incoming requests from the plugin.

Once those two methods were called lightningd will start passing through incoming JSON-RPC commands that
were registered and the plugin may interact with lightningd using the JSON-RPC over Unix-Socket interface.

4.1.1 The getmanifest method

The getmanifest method is required for all plugins and will be called on startup without any params. It MUST
return a JSON object similar to this example:

{
"options": [
{

"name": "greeting",
"type": "string",
"default": "World",
"description": "What name should I call you?"

}
],
"rpcmethods": [
{

"name": "hello",
"usage": "[name]",
"description": "Returns a personalized greeting for {greeting} (set via

→˓options)."
},
{

"name": "gettime",
"usage": "",
"description": "Returns the current time in {timezone}",
"long_description": "Returns the current time in the timezone that is given as

→˓the only parameter.\nThis description may be quite long and is allowed to span
→˓multiple lines."

}
],
"subscriptions": [
"connect",
"disconnect"

],
"hooks": [
"openchannel",
"htlc_accepted"

],
"features": {
"node": "D0000000",
"channel": "D0000000",
"init": "0E000000",
"invoice": "00AD0000"

},
"dynamic": true

}

22 Chapter 4. Plugins

c-lightning, Release v0.9.0-45-g723b722-modded

The options will be added to the list of command line options that lightningd accepts. The above will add
a --greeting option with a default value of World and the specified description. Notice that currently string,
integers, bool, and flag options are supported.

The rpcmethods are methods that will be exposed via lightningd’s JSON-RPC over Unix-Socket interface, just
like the builtin commands. Any parameters given to the JSON-RPC calls will be passed through verbatim. Notice that
the name, description and usage fields are mandatory, while the long_description can be omitted (it’ll
be set to description if it was not provided). usage should surround optional parameter names in [].

The dynamic indicates if the plugin can be managed after lightningd has been started. Critical plugins that
should not be stopped should set it to false.

The featurebits object allows the plugin to register featurebits that should be announced in a number of places in
the protocol. They can be used to signal support for custom protocol extensions to direct peers, remote nodes and in
invoices. Custom protocol extensions can be implemented for example using the sendcustommsg method and the
custommsg hook, or the sendonion method and the htlc_accepted hook. The keys in the featurebits
object are node for features that should be announced via the node_announcement to all nodes in the network,
init for features that should be announced to direct peers during the connection setup, channel for features which
should apply to channel_announcement, and invoice for features that should be announced to a potential
sender of a payment in the invoice. The low range of featurebits is reserved for standardize features, so please pick
random, high position bits for experiments. If you’d like to standardize your extension please reach out to the specifi-
cation repository to get a featurebit assigned.

Plugins are free to register any name for their rpcmethod as long as the name was not previously registered. This
includes both built-in methods, such as help and getinfo, as well as methods registered by other plugins. If there
is a conflict then lightningd will report an error and exit.

Types of Options

There are currently four supported option ‘types’:

• string: a string

• bool: a boolean

• int: parsed as a signed integer (64-bit)

• flag: no-arg flag option. Is boolean under the hood. Defaults to false.

Nota bene: if a flag type option is not set, it will not appear in the options set that is passed to the plugin.

Here’s an example option set, as sent in response to getmanifest

"options": [
{

"name": "greeting",
"type": "string",
"default": "World",
"description": "What name should I call you?"

},
{

"name": "run-hot",
"type": "flag",
"default": None, // defaults to false
"description": "If set, overclocks plugin"

},
{

"name": "is_online",
"type": "bool",

(continues on next page)

4.1. A day in the life of a plugin 23

https://github.com/lightningnetwork/lightning-rfc/blob/master/09-features

c-lightning, Release v0.9.0-45-g723b722-modded

(continued from previous page)

"default": false,
"description": "Set to true if plugin can use network"

},
{

"name": "service-port",
"type": "int",
"default": 6666,
"description": "Port to use to connect to 3rd-party service"

}
],

4.1.2 The init method

The init method is required so that lightningd can pass back the filled command line options and notify the
plugin that lightningd is now ready to receive JSON-RPC commands. The params of the call are a simple JSON
object containing the options:

{
"options": {
"greeting": "World"

},
"configuration": {
"lightning-dir": "/home/user/.lightning/testnet",
"rpc-file": "lightning-rpc",
"startup": true

}
}

The plugin must respond to init calls, however the response can be arbitrary and will currently be discarded by
lightningd. JSON-RPC commands were chosen over notifications in order not to force plugins to implement
notifications which are not that well supported.

The startup field allows a plugin to detect if it was started at lightningd startup (true), or at runtime (false).

4.2 JSON-RPC passthrough

Plugins may register their own JSON-RPC methods that are exposed through the JSON-RPC provided by
lightningd. This provides users with a single interface to interact with, while allowing the addition of custom
methods without having to modify the daemon itself.

JSON-RPC methods are registered as part of the getmanifest result. Each registered method must provide a name
and a description. An optional long_description may also be provided. This information is then added to
the internal dispatch table, and used to return the help text when using lightning-cli help, and the methods
can be called using the name.

For example the above getmanifest result will register two methods, called hello and gettime:

...
"rpcmethods": [
{

"name": "hello",
"usage": "[name]",
"description": "Returns a personalized greeting for {greeting} (set via

→˓options)." (continues on next page)

24 Chapter 4. Plugins

c-lightning, Release v0.9.0-45-g723b722-modded

(continued from previous page)

},
{

"name": "gettime",
"description": "Returns the current time in {timezone}",
"usage": "",
"long_description": "Returns the current time in the timezone that is given as

→˓the only parameter.\nThis description may be quite long and is allowed to span
→˓multiple lines."

}
],
...

The RPC call will be passed through unmodified, with the exception of the JSON-RPC call id, which is internally
remapped to a unique integer instead, in order to avoid collisions. When passing the result back the id field is restored
to its original value.

Note that if your result for an RPC call includes "format-hint": "simple", then lightning-cli will
default to printing your output in “human-readable” flat form.

4.3 Event notifications

Event notifications allow a plugin to subscribe to events in lightningd. lightningd will then send a push
notification if an event matching the subscription occurred. A notification is defined in the JSON-RPC specification as
an RPC call that does not include an id parameter:

A Notification is a Request object without an “id” member. A Request object that is a Notification signifies
the Client’s lack of interest in the corresponding Response object, and as such no Response object needs
to be returned to the client. The Server MUST NOT reply to a Notification, including those that are within
a batch request.

Notifications are not confirmable by definition, since they do not have a Response object to be returned.
As such, the Client would not be aware of any errors (like e.g. “Invalid params”,”Internal error”).

Plugins subscribe by returning an array of subscriptions as part of the getmanifest response. The result for the
getmanifest call above for example subscribes to the two topics connect and disconnect. The topics that
are currently defined and the corresponding payloads are listed below.

4.3.1 channel_opened

A notification for topic channel_opened is sent if a peer successfully funded a channel with us. It contains the peer
id, the funding amount (in millisatoshis), the funding transaction id, and a boolean indicating if the funding transaction
has been included into a block.

{
"channel_opened": {
"id": "03864ef025fde8fb587d989186ce6a4a186895ee44a926bfc370e2c366597a3f8f",
"funding_satoshis": "100000000msat",
"funding_txid": "4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b

→˓",
"funding_locked": false

}
}

4.3. Event notifications 25

https://www.jsonrpc.org/specification

c-lightning, Release v0.9.0-45-g723b722-modded

4.3.2 connect

A notification for topic connect is sent every time a new connection to a peer is established.

{
"id": "02f6725f9c1c40333b67faea92fd211c183050f28df32cac3f9d69685fe9665432",
"address": "1.2.3.4"

}

4.3.3 disconnect

A notification for topic disconnect is sent every time a connection to a peer was lost.

{
"id": "02f6725f9c1c40333b67faea92fd211c183050f28df32cac3f9d69685fe9665432"

}

4.3.4 invoice_payment

A notification for topic invoice_payment is sent every time an invoice is paid.

{
"invoice_payment": {
"label": "unique-label-for-invoice",
"preimage": "00",
"msat": "10000msat"

}
}

4.3.5 invoice_creation

A notification for topic invoice_creation is sent every time an invoice is created.

{
"invoice_creation": {
"label": "unique-label-for-invoice",
"preimage": "00",
"msat": "10000msat"

}
}

4.3.6 warning

A notification for topic warning is sent every time a new BROKEN /UNUSUAL level(in plugins, we use
error/warn) log generated, which means an unusual/borken thing happens, such as channel failed, message re-
solving failed. . .

{
"warning": {
"level": "warn",
"time": "1559743608.565342521",

(continues on next page)

26 Chapter 4. Plugins

c-lightning, Release v0.9.0-45-g723b722-modded

(continued from previous page)

"source": "lightningd(17652):
→˓0821f80652fb840239df8dc99205792bba2e559a05469915804c08420230e23c7c chan #7854:",

"log": "Peer permanent failure in CHANNELD_NORMAL: lightning_channeld: sent ERROR
→˓bad reestablish dataloss msg"
}

}

1. level is warn or error: warn means something seems bad happened and it’s under control, but we’d better
check it; error means something extremely bad is out of control, and it may lead to crash;

2. time is the second since epoch;

3. source means where the event happened, it may have the following forms: <node_id> chan
#<db_id_of_channel>:,lightningd(<lightningd_pid>):, plugin-<plugin_name>:,
<daemon_name>(<daemon_pid>):, jsonrpc:, jcon fd <error_fd_to_jsonrpc>:,
plugin-manager;

4. log is the context of the original log entry.

4.3.7 forward_event

A notification for topic forward_event is sent every time the status of a forward payment is set. The json format
is same as the API listforwards.

{
"forward_event": {
"payment_hash": "f5a6a059a25d1e329d9b094aeeec8c2191ca037d3f5b0662e21ae850debe8ea2

→˓",
"in_channel": "103x2x1",
"out_channel": "103x1x1",
"in_msatoshi": 100001001,
"in_msat": "100001001msat",
"out_msatoshi": 100000000,
"out_msat": "100000000msat",
"fee": 1001,
"fee_msat": "1001msat",
"status": "settled",
"received_time": 1560696342.368,
"resolved_time": 1560696342.556

}
}

or

{
"forward_event": {
"payment_hash": "ff

→˓",
"in_channel": "103x2x1",
"out_channel": "110x1x0",
"in_msatoshi": 100001001,
"in_msat": "100001001msat",
"out_msatoshi": 100000000,
"out_msat": "100000000msat",
"fee": 1001,
"fee_msat": "1001msat",

(continues on next page)

4.3. Event notifications 27

c-lightning, Release v0.9.0-45-g723b722-modded

(continued from previous page)

"status": "local_failed",
"failcode": 16392,
"failreason": "WIRE_PERMANENT_CHANNEL_FAILURE",
"received_time": 1560696343.052

}
}

• The status includes offered, settled, failed and local_failed, and they are all string type in json.

– When the forward payment is valid for us, we’ll set offered and send the forward payment to next hop
to resolve;

– When the payment forwarded by us gets paid eventually, the forward payment will change the status from
offered to settled;

– If payment fails locally(like failing to resolve locally) or the corresponding htlc with next hop fails(like
htlc timeout), we will set the status as local_failed. local_failed may be set before setting
offered or after setting offered. In fact, from the time we receive the htlc of the previous hop, all we
can know the cause of the failure is treated as local_failed. local_failed only occuors locally
or happens in the htlc between us and next hop;

* If local_failed is set before offered, this means we just received htlc from the previous hop
and haven’t generate htlc for next hop. In this case, the json of forward_event sets the fields of
out_msatoshi, out_msat,fee and out_channel as 0;

· Note: In fact, for this case we may be not sure if this incoming htlc represents a pay to us or a pay-
ment we need to forward. We just simply treat all incoming failed to resolve as local_failed.

* Only in local_failed case, json includes failcode and failreason fields;

– failed means the payment forwarded by us fails in the latter hops, and the failure isn’t related to us, so
we aren’t accessed to the fail reason. failed must be set after offered.

* failed case doesn’t include failcode and failreason fields;

• received_timemeans when we received the htlc of this payment from the previous peer. It will be contained
into all status case;

• resolved_time means when the htlc of this payment between us and the next peer was resolved. The
resolved result may success or fail, so only settled and failed case contain resolved_time;

• The failcode and failreason are defined in [BOLT 4][bolt4-failure-codes].

4.3.8 sendpay_success

A notification for topic sendpay_success is sent every time a sendpay succeeds (with complete status). The
json is the same as the return value of the commands sendpay/waitsendpay when these commands succeed.

{
"sendpay_success": {
"id": 1,
"payment_hash": "5c85bf402b87d4860f4a728e2e58a2418bda92cd7aea0ce494f11670cfbfb206

→˓",
"destination": "035d2b1192dfba134e10e540875d366ebc8bc353d5aa766b80c090b39c3a5d885d

→˓",
"msatoshi": 100000000,
"amount_msat": "100000000msat",
"msatoshi_sent": 100001001,

(continues on next page)

28 Chapter 4. Plugins

c-lightning, Release v0.9.0-45-g723b722-modded

(continued from previous page)

"amount_sent_msat": "100001001msat",
"created_at": 1561390572,
"status": "complete",
"payment_preimage":

→˓"9540d98095fd7f37687ebb7759e733934234d4f934e34433d4998a37de3733ee"
}

}

sendpay doesn’t wait for the result of sendpay and waitsendpay returns the result of sendpay in specified time or
timeout, but sendpay_success will always return the result anytime when sendpay successes if is was subscribed.

4.3.9 sendpay_failure

A notification for topic sendpay_failure is sent every time a sendpay completes with failed status. The JSON
is same as the return value of the commands sendpay/waitsendpay when these commands fail.

{
"sendpay_failure": {
"code": 204,
"message": "failed: WIRE_UNKNOWN_NEXT_PEER (reply from remote)",
"data": {

"id": 2,
"payment_hash":

→˓"9036e3bdbd2515f1e653cb9f22f8e4c49b73aa2c36e937c926f43e33b8db8851",
"destination":

→˓"035d2b1192dfba134e10e540875d366ebc8bc353d5aa766b80c090b39c3a5d885d",
"msatoshi": 100000000,
"amount_msat": "100000000msat",
"msatoshi_sent": 100001001,
"amount_sent_msat": "100001001msat",
"created_at": 1561395134,
"status": "failed",
"erring_index": 1,
"failcode": 16394,
"failcodename": "WIRE_UNKNOWN_NEXT_PEER",
"erring_node":

→˓"022d223620a359a47ff7f7ac447c85c46c923da53389221a0054c11c1e3ca31d59",
"erring_channel": "103x2x1",
"erring_direction": 0

}
}

}

sendpay doesn’t wait for the result of sendpay and waitsendpay returns the result of sendpay in specified time
or timeout, but sendpay_failure will always return the result anytime when sendpay fails if is was subscribed.

4.3.10 coin_movement

A notification for topic coin_movement is sent to record the movement of coins. It is only triggered by finalized
ledger updates, i.e. only definitively resolved HTLCs or confirmed bitcoin transactions.

{
"coin_movement": {

"version":1,
(continues on next page)

4.3. Event notifications 29

c-lightning, Release v0.9.0-45-g723b722-modded

(continued from previous page)

"node_id":
→˓"03a7103a2322b811f7369cbb27fb213d30bbc0b012082fed3cad7e4498da2dc56b",

"movement_idx":0,
"type":"chain_mvt",
"account_id":"wallet",
"txid":

→˓"0159693d8f3876b4def468b208712c630309381e9d106a9836fa0a9571a28722", // (`chain_mvt`
→˓type only, mandatory)

"utxo_txid":
→˓"0159693d8f3876b4def468b208712c630309381e9d106a9836fa0a9571a28722", // (`chain_mvt`
→˓type only, optional)

"vout":1, // (`chain_mvt` type only, optional)
"payment_hash": "xxx", // (either type, optional on `chain_mvt`)
"part_id": 0, // (`channel_mvt` type only, mandatory)
"credit":"2000000000msat",
"debit":"0msat",
"tag":"deposit",
"blockheight":102, // (`channel_mvt` type only. may be null)
"timestamp":1585948198,
"coin_type":"bc"

}
}

version indicates which version of the coin movement data struct this notification adheres to.

node_id specifies the node issuing the coin movement.

movement_idx is an increment-only counter for coin moves emitted by this node.

type marks the underlying mechanism which moved these coins. There are two ‘types’ of coin_movements:

• channel_mvts, which occur as a result of htlcs being resolved and,

• chain_mvts, which occur as a result of bitcoin txs being mined.

account_id is the name of this account. The node’s wallet is named ‘wallet’, all channel funds’ account are the
channel id.

txid is the transaction id of the bitcoin transaction that triggered this ledger event. utxo_txid and vout
identify the bitcoin output which triggered this notification. (chain_mvt only) In most cases, the utxo_txid
will be the same as the txid, except for spend_track notficiations. Notifications tagged chain_fees and
journal_entry do not have a utxo_txid as they’re not represented in the utxo set.

payment_hash is the hash of the preimage used to move this payment. Only present for HTLC mediated moves
(both chain_mvt and channel_mvt) A chain_mvt will have a payment_hash iff it’s recording an htlc that
was fulfilled onchain.

part_id is an identifier for parts of a multi-part payment. useful for aggregating payments for an invoice or to
indicate why a payment hash appears multiple times. channel_mvt only

credit and debit are millisatoshi denominated amounts of the fund movement. A ‘credit’ is funds deposited into
an account; a debit is funds withdrawn.

tag is a movement descriptor. Current tags are as follows:

• deposit: funds deposited

• withdrawal: funds withdrawn

• chain_fees: funds paid for onchain fees. chain_mvt only

• penalty: funds paid or gained from a penalty tx. chain_mvt only

30 Chapter 4. Plugins

c-lightning, Release v0.9.0-45-g723b722-modded

• invoice: funds paid to or recieved from an invoice. channel_mvt only

• routed: funds routed through this node. channel_mvt only

• journal_entry: a balance reconciliation event, typically triggered by a penalty tx onchain. chain_mvt
only

• onchain_htlc: funds moved via an htlc onchain. chain_mvt only

• pushed: funds pushed to peer. channel_mvt only.

• spend_track: informational notification about a wallet utxo spend. chain_mvt only.

blockheight is the block the txid is included in. chain_mvt only. In the case that an output is considered dust,
c-lightning does not track its return to our wallet. In those cases, the blockheight will be null, as they’re recorded
before confirmation.

The timestamp is seconds since Unix epoch of the node’s machine time at the time lightningd broadcasts the
notification.

coin_type is the BIP173 name for the coin which moved.

4.4 Hooks

Hooks allow a plugin to define custom behavior for lightningd without having to modify the c-lightning source
code itself. A plugin declares that it’d like to be consulted on what to do next for certain events in the daemon. A hook
can then decide how lightningd should react to the given event.

The call semantics of the hooks, i.e., when and how hooks are called, depend on the hook type. Most hooks are
currently set to single-mode. In this mode only a single plugin can register the hook, and that plugin will get called
for each event of that type. If a second plugin attempts to register the hook it gets killed and a corresponding log
entry will be added to the logs. In chain-mode multiple plugins can register for the hook type and they are called
sequentially if a matching event is triggered. Each plugin can then handle the event or defer by returning a continue
result like the following:

{
"result": "continue"

}

The remainder of the response is ignored and if there are any more plugins that have registered the hook the next one
gets called. If there are no more plugins then the internal handling is resumed as if no hook had been called. Any
other result returned by a plugin is considered an exit from the chain. Upon exit no more plugin hooks are called for
the current event, and the result is executed. Unless otherwise stated all hooks are single-mode.

Hooks and notifications are very similar, however there are a few key differences:

• Notifications are asynchronous, i.e., lightningd will send the notifications but not wait for the plugin to
process them. Hooks on the other hand are synchronous, lightningd cannot finish processing the event until
the plugin has returned.

• Any number of plugins can subscribe to a notification topic and get notified in parallel, however only one plugin
may register for single-mode hook types, and in all cases only one plugin may return a non-continue
response. This avoids having multiple contradictory responses.

Hooks are considered to be an advanced feature due to the fact that lightningd relies on the plugin to tell it what
to do next. Use them carefully, and make sure your plugins always return a valid response to any hook invocation.

As a convention, for all hooks, returning the object { "result" : "continue" } results in lightningd
behaving exactly as if no plugin is registered on the hook.

4.4. Hooks 31

c-lightning, Release v0.9.0-45-g723b722-modded

4.4.1 peer_connected

This hook is called whenever a peer has connected and successfully completed the cryptographic handshake. The
parameters have the following structure if there is a channel with the peer:

{
"peer": {
"id": "03864ef025fde8fb587d989186ce6a4a186895ee44a926bfc370e2c366597a3f8f",
"addr": "34.239.230.56:9735",
"features": ""

}
}

The hook is sparse on purpose, since the plugin can use the JSON-RPC listpeers command to get additional
details should they be required. The addr field shows the address that we are connected to ourselves, not the gossiped
list of known addresses. In particular this means that the port for incoming connections is an ephemeral port, that may
not be available for reconnections.

The returned result must contain a result member which is either the string disconnect or continue. If
disconnect and there’s a member error_message, that member is sent to the peer before disconnection.

4.4.2 commitment_revocation

This hook is called whenever a channel state is updated, and the old state was revoked. State updates in Lightning
consist of the following steps:

1. Proposal of a new state commitment in the form of a commitment transaction

2. Exchange of signatures for the agreed upon commitment transaction

3. Verification that the signatures match the commitment transaction

4. Exchange of revocation secrets that could be used to penalize an eventual misbehaving party

The commitment_revocation hook is used to inform the plugin about the state transition being completed, and
deliver the penalty transaction. The penalty transaction could then be sent to a watchtower that automaticaly reacts in
case one party attempts to settle using a revoked commitment.

The payload consists of the following information:

{
"commitment_txid":

→˓"58eea2cf538cfed79f4d6b809b920b40bb6b35962c4bb4cc81f5550a7728ab05",
"penalty_tx": "02000000000101...ac00000000"

}

Notice that the commitment_txid could also be extracted from the sole input of the penalty_tx, however it is
enclosed so plugins don’t have to include the logic to parse transactions.

Not included are the htlc_success and htlc_failure transactions that may also be spending
commitment_tx outputs. This is because these transactions are much more dynamic and have a predictable timeout,
allowing wallets to ensure a quick checkin when the CLTV of the HTLC is about to expire.

The commitment_revocation hook is a chained hook, i.e., multiple plugins can register it, and they will be
called in the order they were registered in. Plugins should always return {"result": "continue"}, otherwise
subsequent hook subscribers would not get called.

32 Chapter 4. Plugins

c-lightning, Release v0.9.0-45-g723b722-modded

4.4.3 db_write

This hook is called whenever a change is about to be committed to the database. It is currently extremely restricted:

1. a plugin registering for this hook should not perform anything that may cause a db operation in response (pretty
much, anything but logging).

2. a plugin registering for this hook should not register for other hooks or commands, as these may become inter-
mingled and break rule #1.

3. the hook will be called before your plugin is initialized!

This hook, unlike all the other hooks, is also strongly synchronous: lightningd will stop almost all the other
processing until this hook responds.

{
"data_version": 42,
"writes": [
"PRAGMA foreign_keys = ON"

]
}

This hook is intended for creating continuous backups. The intent is that your backup plugin maintains three pieces
of information (possibly in separate files): (1) a snapshot of the database, (2) a log of database queries that will bring
that snapshot up-to-date, and (3) the previous data_version.

data_version is an unsigned 32-bit number that will always increment by 1 each time db_write is called. Note
that this will wrap around on the limit of 32-bit numbers.

writes is an array of strings, each string being a database query that modifies the database. If the data_version
above is validated correctly, then you can simply append this to the log of database queries.

Your plugin MUST validate the data_version. It MUST keep track of the previous data_version it got, and:

1. If the new data_version is exactly one higher than the previous, then this is the ideal case and nothing bad
happened and we should save this and continue.

2. If the new data_version is exactly the same value as the previous, then the previous set of queries was not
committed. Your plugin MAY overwrite the previous set of queries with the current set, or it MAY overwrite
its entire backup with a new snapshot of the database and the current writes array (treating this case as if
data_version were two or more higher than the previous).

3. If the new data_version is less than the previous, your plugin MUST halt and catch fire, and have the
operator inspect what exactly happend here.

4. Otherwise, some queries were lost and your plugin SHOULD recover by creating a new snapshot of the
database: copy the database file, back up the given writes array, then delete (or atomically rename if in
a POSIX filesystem) the previous backups of the database and SQL statements, or you MAY fail the hook to
abort lightningd.

The “rolling up” of the database could be done periodically as well if the log of SQL statements has grown large.

Any response other than {"result": "continue"} will cause lightningd to error without committing to the
database! This is the expected way to halt and catch fire.

4.4.4 invoice_payment

This hook is called whenever a valid payment for an unpaid invoice has arrived.

4.4. Hooks 33

c-lightning, Release v0.9.0-45-g723b722-modded

{
"payment": {
"label": "unique-label-for-invoice",
"preimage": "00",
"msat": "10000msat"

}
}

The hook is sparse on purpose, since the plugin can use the JSON-RPC listinvoices command to get additional
details about this invoice. It can return a failure_message field as defined for final nodes in BOLT 4, a result
field with the string reject to fail it with incorrect_or_unknown_payment_details, or a result field
with the string continue to accept the payment.

4.4.5 openchannel

This hook is called whenever a remote peer tries to fund a channel to us, and it has passed basic sanity checks:

{
"openchannel": {
"id": "03864ef025fde8fb587d989186ce6a4a186895ee44a926bfc370e2c366597a3f8f",
"funding_satoshis": "100000000msat",
"push_msat": "0msat",
"dust_limit_satoshis": "546000msat",
"max_htlc_value_in_flight_msat": "18446744073709551615msat",
"channel_reserve_satoshis": "1000000msat",
"htlc_minimum_msat": "0msat",
"feerate_per_kw": 7500,
"to_self_delay": 5,
"max_accepted_htlcs": 483,
"channel_flags": 1

}
}

There may be additional fields, including shutdown_scriptpubkey and a hex-string. You can see the definitions
of these fields in BOLT 2’s description of the open_channel message.

The returned result must contain a result member which is either the string reject or continue. If reject
and there’s a member error_message, that member is sent to the peer before disconnection.

For a ‘continue’d result, you can also include a close_to address, which will be used as the output address for a
mutual close transaction.

e.g.

{
"result": "continue",
"close_to": "bc1qlq8srqnz64wgklmqvurv7qnr4rvtq2u96hhfg2"

}

Note that close_to must be a valid address for the current chain; an invalid address will cause the node to exit with
an error.

4.4.6 htlc_accepted

The htlc_accepted hook is called whenever an incoming HTLC is accepted, and its result determines how
lightningd should treat that HTLC.

34 Chapter 4. Plugins

https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#failure-messages
https://github.com/lightningnetwork/lightning-rfc/blob/master/02-peer-protocol.md#the-open_channel-message

c-lightning, Release v0.9.0-45-g723b722-modded

The payload of the hook call has the following format:

{
"onion": {
"payload": "",
"type": "legacy",
"short_channel_id": "1x2x3",
"forward_amount": "42msat",
"outgoing_cltv_value": 500014

},
"next_onion": "[1365bytes of serialized onion]",
"shared_secret": "00",
"htlc": {
"amount": "43msat",
"cltv_expiry": 500028,
"cltv_expiry_relative": 10,
"payment_hash": "00"

}
}

For detailed information about each field please refer to BOLT 04 of the specification, the following is just a brief
summary:

• onion.payload contains the unparsed payload that was sent to us from the sender of the payment.

• onion.type is legacy for realm 0 payments, tlv for realm > 1.

• short_channel_id determines the channel that the sender is hinting should be used next. Not present if
we’re the final destination.

• forward_amount is the amount we should be forwarding to the next hop, and should match the incoming
funds in case we are the recipient.

• outgoing_cltv_value determines what the CLTV value for the HTLC that we forward to the next hop
should be.

• total_msat specifies the total amount to pay, if present.

• payment_secret specifies the payment secret (which the payer should have obtained from the invoice), if
present.

• next_onion is the fully processed onion that we should be sending to the next hop as part of the outgoing
HTLC. Processed in this case means that we took the incoming onion, decrypted it, extracted the payload
destined for us, and serialized the resulting onion again.

• shared_secret is the shared secret we used to decrypt the incoming onion. It is shared with the sender that
constructed the onion.

• htlc:

– amount is the amount that we received with the HTLC. This amount minus the forward_amount is
the fee that will stay with us.

– cltv_expiry determines when the HTLC reverts back to the sender. cltv_expiry minus
outgoing_cltv_expiry should be equal or larger than our cltv_delta setting.

– cltv_expiry_relative hints how much time we still have to claim the HTLC. It is the
cltv_expiry minus the current blockheight and is passed along mainly to avoid the plugin having
to look up the current blockheight.

– payment_hash is the hash whose payment_preimage will unlock the funds and allow us to claim
the HTLC.

4.4. Hooks 35

https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing

c-lightning, Release v0.9.0-45-g723b722-modded

The hook response must have one of the following formats:

{
"result": "continue"

}

This means that the plugin does not want to do anything special and lightningd should continue processing it
normally, i.e., resolve the payment if we’re the recipient, or attempt to forward it otherwise. Notice that the usual
checks such as sufficient fees and CLTV deltas are still enforced.

It can also replace the onion.payload by specifying a payload in the response. Note that this is always a TLV-
style payload, so unlike onion.payload there is no length prefix (and it must be at least 4 hex digits long). This
will be re-parsed; it’s useful for removing onion fields which a plugin doesn’t want lightningd to consider.

{
"result": "fail",
"failure_message": "2002"

}

fail will tell lightningd to fail the HTLC with a given hex-encoded failure_message (please refer to the
spec for details: incorrect_or_unknown_payment_details is the most common).

{
"result": "resolve",
"payment_key": "00"

}

resolve instructs lightningd to claim the HTLC by providing the preimage matching the payment_hash
presented in the call. Notice that the plugin must ensure that the payment_key really matches the payment_hash
since lightningd will not check and the wrong value could result in the channel being closed.

Warning: lightningd will replay the HTLCs for which it doesn’t have a final verdict during startup. This means
that, if the plugin response wasn’t processed before the HTLC was forwarded, failed, or resolved, then the plugin
may see the same HTLC again during startup. It is therefore paramount that the plugin is idempotent if it talks to an
external system.

The htlc_accepted hook is a chained hook, i.e., multiple plugins can register it, and they will be called in the
order they were registered in until the first plugin return a result that is not {"result": "continue"}, after
which the event is considered to be handled. After the event has been handled the remaining plugins will be skipped.

4.4.7 rpc_command

The rpc_command hook allows a plugin to take over any RPC command. It sends the received JSON-RPC request
to the registered plugin,

{
"rpc_command": {

"id": 3,
"method": "method_name",
"params": {

"param_1": [],
"param_2": {},
"param_n": "",

}
}

}

36 Chapter 4. Plugins

https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#failure-messages

c-lightning, Release v0.9.0-45-g723b722-modded

which can in turn:

Let lightningd execute the command with

{
"result" : "continue"

}

Replace the request made to lightningd:

{
"replace": {

"id": 3,
"method": "method_name",
"params": {

"param_1": [],
"param_2": {},
"param_n": "",

}
}

}

Return a custom response to the request sender:

{
"return": {

"result": {
}

}
}

Return a custom error to the request sender:

{
"return": {

"error": {
}

}
}

4.4.8 custommsg

The custommsg plugin hook is the receiving counterpart to the dev-sendcustommsg RPC method and allows
plugins to handle messages that are not handled internally. The goal of these two components is to allow the im-
plementation of custom protocols or prototypes on top of a c-lightning node, without having to change the node’s
implementation itself.

The payload for a call follows this format:

{
"peer_id": "02df5ffe895c778e10f7742a6c5b8a0cefbe9465df58b92fadeb883752c8107c8f

→˓",
"message": "1337ffffffff"

}

This payload would have been sent by the peer with the node_id matching peer_id, and the message has type
0x1337 and contents ffffffff. Notice that the messages are currently limited to odd-numbered types and must

4.4. Hooks 37

lightning-dev-sendcustommsg.7.html

c-lightning, Release v0.9.0-45-g723b722-modded

not match a type that is handled internally by c-lightning. These limitations are in place in order to avoid conflicts
with the internal state tracking, and avoiding disconnections or channel closures, since odd-numbered message can be
ignored by nodes (see “it’s ok to be odd” in the specification for details). The plugin must implement the parsing of
the message, including the type prefix, since c-lightning does not know how to parse the message.

The result for this hook is currently being discarded. For future uses of the result we suggest just returning
{'result': 'continue'}. This will ensure backward compatibility should the semantics be changed in fu-
ture.

4.5 Bitcoin backend

C-lightning communicates with the Bitcoin network through a plugin. It uses the bcli plugin by default but you can
use a custom one, multiple custom ones for different operations, or write your own for your favourite Bitcoin data
source!

Communication with the plugin is done through 5 JSONRPC commands, lightningd can use from 1 to 5 plu-
gin(s) registering these 5 commands for gathering Bitcoin data. Each plugin must follow the below specification for
lightningd to operate.

4.5.1 getchaininfo

Called at startup, it’s used to check the network lightningd is operating on and to get the sync status of the backend.

The plugin must respond to getchaininfo with the following fields: - chain (string), the network name as
introduced in bip70 - headercount (number), the number of fetched block headers - blockcount (number), the
number of fetched block body - ibd (bool), whether the backend is performing initial block download

4.5.2 estimatefees

Polled by lightningd to get the current feerate, all values must be passed in sat/kVB.

If fee estimation fails, the plugin must set all the fields to null.

The plugin, if fee estimation succeeds, must respond with the following fields: - opening (number), used
for funding and also misc transactions - mutual_close (number), used for the mutual close transaction -
unilateral_close (number), used for unilateral close (/commitment) transactions - delayed_to_us (num-
ber), used for resolving our output from our unilateral close - htlc_resolution (number), used for resolving
HTLCs after an unilateral close - penalty (number), used for resolving revoked transactions - min_acceptable
(number), used as the minimum acceptable feerate - max_acceptable (number), used as the maximum acceptable
feerate

4.5.3 getrawblockbyheight

This call takes one parameter, height, which determines the block height of the block to fetch.

The plugin must set all fields to null if no block was found at the specified height.

The plugin must respond to getrawblockbyheight with the following fields: - blockhash (string), the block
hash as a hexadecimal string - block (string), the block content as a hexadecimal string

38 Chapter 4. Plugins

https://github.com/lightningnetwork/lightning-rfc/blob/master/00-introduction.md#its-ok-to-be-odd

c-lightning, Release v0.9.0-45-g723b722-modded

4.5.4 getutxout

This call takes two parameter, the txid (string) and the vout (number) identifying the UTXO we’re interested in.

The plugin must set both fields to null if the specified TXO was spent.

The plugin must respond to gettxout with the following fields: - amount (number), the output value in sats -
script (string), the output scriptPubKey

4.5.5 sendrawtransaction

This call takes one parameter, a string representing a hex-encoded Bitcoin transaction.

The plugin must broadcast it and respond with the following fields: - success (boolean), which is true if the
broadcast succeeded - errmsg (string), if success is false, the reason why it failed

4.5. Bitcoin backend 39

c-lightning, Release v0.9.0-45-g723b722-modded

40 Chapter 4. Plugins

CHAPTER 5

Hacking

Welcome, fellow coder!

This repository contains a code to run a lightning protocol daemon. It’s broken into subdaemons, with the idea being
that we can add more layers of separation between different clients and extra barriers to exploits.

It is designed to implement the lightning protocol as specified in various BOLTs.

5.1 Getting Started

It’s in C, to encourage alternate implementations. Patches are welcome! You should read our Style Guide.

To read the code, you should start from lightningd.c and hop your way through the ‘~’ comments at the head of each
daemon in the suggested order.

5.2 The Components

Here’s a list of parts, with notes:

• ccan - useful routines from http://ccodearchive.net

– Use make update-ccan to update it.

– Use make update-ccan CCAN_NEW=”mod1 mod2. . . ” to add modules

– Do not edit this! If you want a wrapper, add one to common/utils.h.

• bitcoin/ - bitcoin script, signature and transaction routines.

– Not a complete set, but enough for our purposes.

• external/ - external libraries from other sources

– libbacktrace - library to provide backtraces when things go wrong.

– libsodium - encryption library (should be replaced soon with built-in)

41

https://github.com/lightningnetwork/lightning-rfc
../lightningd/lightningd.c

c-lightning, Release v0.9.0-45-g723b722-modded

– libwally-core - bitcoin helper library

– secp256k1 - bitcoin curve encryption library within libwally-core

– jsmn - tiny JSON parsing helper

• tools/ - tools for building

– check-bolt.c: check the source code contains correct BOLT quotes (as used by check-source)

– generate-wire.py: generates wire marshal/unmarshal-ing routines for subdaemons and BOLT specs.

– mockup.sh / update-mocks.sh: tools to generate mock functions for unit tests.

• tests/ - blackbox tests (mainly)

– unit tests are in tests/ subdirectories in each other directory.

• doc/ - you are here

• devtools/ - tools for developers

– Generally for decoding our formats.

• contrib/ - python support and other stuff which doesn’t belong :)

• wire/ - basic marshalling/un for messages defined in the BOLTs

• common/ - routines needed by any two or more of the directories below

• cli/ - commandline utility to control lightning daemon.

• lightningd/ - master daemon which controls the subdaemons and passes peer file descriptors between them.

• wallet/ - database code used by master for tracking what’s happening.

• hsmd/ - daemon which looks after the cryptographic secret, and performs commitment signing.

• gossipd/ - daemon to maintain routing information and broadcast gossip.

• connectd/ - daemon to connect to other peers, and receive incoming.

• openingd/ - daemon to open a channel for a single peer, and chat to a peer which doesn’t have any channels/

• channeld/ - daemon to operate a single peer once channel is operating normally.

• closingd/ - daemon to handle mutual closing negotiation with a single peer.

• onchaind/ - daemon to handle a single channel which has had its funding transaction spent.

5.3 Debugging

You can build c-lightning with DEVELOPER=1 to use dev commands listed in cli/lightning-cli help. .
/configure --enable-developer will do that. You can log console messages with log_info() in lightningd
and status_debug() in other subdaemons.

You can debug crashing subdaemons with the argument --dev-debugger=channeld, where channeld is the
subdaemon name. It will run gnome-terminal by default with a gdb attached to the subdaemon when it starts. You
can change the terminal used by setting the DEBUG_TERM environment variable, such as DEBUG_TERM="xterm
-e" or DEBUG_TERM="konsole -e".

It will also print out (to stderr) the gdb command for manual connection. The subdaemon will be stopped (it sends
itself a SIGSTOP); you’ll need to continue in gdb.

42 Chapter 5. Hacking

c-lightning, Release v0.9.0-45-g723b722-modded

5.4 Database

c-lightning state is persisted in lightning-dir. It is a sqlite database stored in the lightningd.sqlite3 file,
typically under ~/.lightning/<network>/. You can run queries against this file like so:

$ sqlite3 ~/.lightning/bitcoin/lightningd.sqlite3 \
"SELECT HEX(prev_out_tx), prev_out_index, status FROM outputs"

Or you can launch into the sqlite3 repl and check things out from there:

$ sqlite3 ~/.lightning/bitcoin/lightningd.sqlite3
SQLite version 3.21.0 2017-10-24 18:55:49
Enter ".help" for usage hints.
sqlite> .tables
channel_configs invoices peers vars
channel_htlcs outputs shachain_known version
channels payments shachains
sqlite> .schema outputs
...

Some data is stored as raw bytes, use HEX(column) to pretty print these.

Make sure that clightning is not running when you query the database, as some queries may lock the database and
cause crashes.

5.4.1 Common variables

Table vars contains global variables used by lightning node.

$ sqlite3 ~/.lightning/bitcoin/lightningd.sqlite3
SQLite version 3.21.0 2017-10-24 18:55:49
Enter ".help" for usage hints.
sqlite> .headers on
sqlite> select * from vars;
name|val
next_pay_index|2
bip32_max_index|4
...

Variables:

• next_pay_index next resolved invoice counter that will get assigned.

• bip32_max_index last wallet derivation counter.

Note: Each time newaddr command is called, bip32_max_index counter is increased to the last derivation index.
Each address generated after bip32_max_index is not included as lightning funds.

5.5 Testing

Install valgrind and the python dependencies for best results:

sudo apt install valgrind cppcheck shellcheck libsecp256k1-dev
pip3 install --user \

-r requirements.txt \

(continues on next page)

5.4. Database 43

c-lightning, Release v0.9.0-45-g723b722-modded

(continued from previous page)

-r contrib/pyln-client/requirements.txt \
-r contrib/pyln-proto/requirements.txt \
-r contrib/pyln-testing/requirements.txt

Re-run configure for the python dependencies

./configure --enable-developer

Tests are run with: make check [flags] where the pertinent flags are:

DEVELOPER=[0|1] - developer mode increases test coverage
VALGRIND=[0|1] - detects memory leaks during test execution but adds a significant
→˓delay
PYTEST_PAR=n - runs pytests in parallel

A modern desktop can build and run through all the tests in a couple of minutes with:

make -j12 full-check PYTEST_PAR=24 DEVELOPER=1 VALGRIND=0

Adjust -j and PYTEST_PAR accordingly for your hardware.

There are three kinds of tests:

• source tests - run by make check-source, looks for whitespace, header order, and checks formatted quotes
from BOLTs if BOLTDIR exists.

• unit tests - standalone programs that can be run individually. You can also run all of the unit tests with make
check-units. They are run-*.c files in test/ subdirectories used to test routines inside C source files.

You should insert the lines when implementing a unit test:

/* AUTOGENERATED MOCKS START */

/* AUTOGENERATED MOCKS END */

and make update-mocks will automatically generate stub functions which will allow you to link (and con-
veniently crash if they’re called).

• blackbox tests - These tests setup a mini-regtest environment and test lightningd as a whole. They can be run
individually:

PYTHONPATH=contrib/pylightning:contrib/pyln-client:contrib/
pyln-testing:contrib/pyln-proto py.test -v tests/

You can also append -k TESTNAME to run a single test. Environment variables
DEBUG_SUBD=<subdaemon> and TIMEOUT=<seconds> can be useful for debugging subdaemons
on individual tests.

• pylightning tests - will check contrib pylightning for codestyle and run the tests in contrib/
pylightning/tests afterwards:

make check-python

Our Travis CI instance (see .travis.yml) runs all these for each pull request.

5.6 Making BOLT Modifications

All of code for marshalling/unmarshalling BOLT protocol messages is generated directly from the spec. These are
pegged to the BOLTVERSION, as specified in Makefile.

44 Chapter 5. Hacking

c-lightning, Release v0.9.0-45-g723b722-modded

5.7 Source code analysis

An updated version of the NCC source code analysis tool is available at

https://github.com/bitonic-cjp/ncc

It can be used to analyze the lightningd source code by running make clean && make ncc. The output (which
is built in parallel with the binaries) is stored in .nccout files. You can browse it, for instance, with a command like
nccnav lightningd/lightningd.nccout.

5.8 Subtleties

There are a few subtleties you should be aware of as you modify deeper parts of the code:

• ccan/structeq’s STRUCTEQ_DEF will define safe comparison function foo_eq() for struct foo, failing the
build if the structure has implied padding.

• command_success, command_fail, and command_fail_detailed will free the cmd you pass in.
This also means that if you tal-allocated anything from the cmd, they will also get freed at those points and
will no longer be accessible afterwards.

• When making a structure part of a list, you will instance a struct list_node. This has to be the first field
of the structure, or else dev-memleak command will think your structure has leaked.

5.9 Protocol Modifications

The source tree contains CSV files extracted from the v1.0 BOLT specifications (wire/extracted_peer_wire_csv and
wire/extracted_onion_wire_csv). You can regenerate these by setting BOLTDIR and BOLTVERSION appropriately,
and running make extract-bolt-csv.

5.10 Further Information

Feel free to ask questions on the lightning-dev mailing list, or on #c-lightning on IRC, or email me at
rusty@rustcorp.com.au.

Cheers! Rusty.

5.7. Source code analysis 45

c-lightning, Release v0.9.0-45-g723b722-modded

46 Chapter 5. Hacking

CHAPTER 6

Care And Feeding of Your Fellow Coders

Style is an individualistic thing, but working on software is group activity, so consistency is important. Generally our
coding style is similar to the Linux coding style.

6.1 Communication

We communicate with each other via code; we polish each others code, and give nuanced feedback. Exceptions to the
rules below always exist: accept them. Particularly if they’re funny!

6.2 Prefer Short Names

num_foos is better than number_of_foos, and i is better than counter. But bool found; is better than
bool ret;. Be as short as you can but still descriptive.

6.3 Prefer 80 Columns

We have to stop somewhere. The two tools here are extracting deeply-indented code into their own functions, and use
of short-cuts using early returns or continues, eg:

for (i = start; i != end; i++) {
if (i->something)

continue;

if (!i->something_else)
continue;

do_something(i);
}

47

https://www.kernel.org/doc/html/v4.10/process/coding-style.html

c-lightning, Release v0.9.0-45-g723b722-modded

6.4 Tabs and indentaion

The C code uses TAB charaters with a visual indentation of 8 whitespaces. If you submit code for a review, make sure
your editor knows this.

When breaking a line with more than 80 characters, align parameters and arguments like so:

static void subtract_received_htlcs(const struct channel *channel,
struct amount_msat *amount)

Note: For more details, the files .clang-format and .editorconfig are located in the projects root directory.

6.5 Prefer Simple Statements

Notice the statement above uses separate tests, rather than combining them. We prefer to only combine conditionals
which are fundamentally related, eg:

if (i->something != NULL && *i->something < 100)

6.6 Use of take()

Some functions have parameters marked with TAKES, indicating that they can take lifetime ownership of a parameter
which is passed using take(). This can be a useful optimization which allows the function to avoid making a copy,
but if you hand take(foo) to something which doesn’t support take() you’ll probably leak memory!

In particular, our automatically generated marshalling code doesn’t support take().

If you’re allocating something simply to hand it via take() you should use NULL as the parent for clarity, eg:

msg = towire_shutdown(NULL, &peer->channel_id, peer->final_scriptpubkey);
enqueue_peer_msg(peer, take(msg));

6.7 Use of tmpctx

There’s a convenient temporary tal context which gets cleaned regularly: you should use this for throwaways rather
than (as you’ll see some of our older code do!) grabbing some passing object to hang your temporaries off!

6.8 Enums and Switch Statements

If you handle various enumerated values in a switch, don’t use default: but instead mention every enumeration
case-by-case. That way when a new enumeration case is added, most compilers will warn that you don’t cover it. This
is particularly valuable for code auto-generated from the specification!

6.9 Initialization of Variables

Avoid double-initialization of variables; it’s better to set them when they’re known, eg:

48 Chapter 6. Care And Feeding of Your Fellow Coders

c-lightning, Release v0.9.0-45-g723b722-modded

bool is_foo;

if (bar == foo)
is_foo = true;

else
is_foo = false;

...
if (is_foo)...

This way the compiler will warn you if you have one path which doesn’t set the variable. If you initialize with bool
is_foo = false; then you’ll simply get that value without warning when you change the code and forget to set
it on one path.

6.10 Initialization of Memory

valgrind warns about decisions made on uninitialized memory. Prefer tal and tal_arr to talz and
tal_arrz for this reason, and initialize only the fields you expect to be used.

Similarly, you can use memcheck(mem, len) to explicitly assert that memory should have been initialized, rather
than having valgrind trigger later. We use this when placing things on queues, for example.

6.11 Use of static and const

Everything should be declared static and const by default. Note that tal_free() can free a const pointer (also, that
it returns NULL, for convenience).

6.12 Typesafety Is Worth Some Pain

If code is typesafe, refactoring is as simple as changing a type and compiling to find where to refactor. We rely on this,
so most places in the code will break if you hand the wrong type, eg type_to_string and structeq.

The two tools we have to help us are complicated macros in ccan/typesafe_cb allow you to create callbacks
which must match the type of their argument, rather than using void *. The other is ARRAY_SIZE, a macro which
won’t compile if you hand it a pointer instead of an actual array.

6.13 Use of FIXME

There are two cases in which you should use a /* FIXME: */ comment: one is where an optimization is possible
but it’s not clear that it’s yet worthwhile, and the second one is to note an ugly corner case which could be improved
(and may be in a following patch).

There are always compromises in code: eventually it needs to ship. FIXME is grep-fodder for yourself and others,
as well as useful warning signs if we later encounter an issue in some part of the code.

6.10. Initialization of Memory 49

c-lightning, Release v0.9.0-45-g723b722-modded

6.14 If You Don’t Know The Right Thing, Do The Simplest Thing

Sometimes the right way is unclear, so it’s best not to spend time on it. It’s far easier to rewrite simple code than
complex code, too.

6.15 Write For Today: Unused Code Is Buggy Code

Don’t overdesign: complexity is a killer. If you need a fancy data structure, start with a brute force linked list. Once
that’s working, perhaps consider your fancy structure, but don’t implement a generic thing. Use /* FIXME: ...*/
to salve your conscience.

6.16 Keep Your Patches Reviewable

Try to make a single change at a time. It’s tempting to do “drive-by” fixes as you see other things, and a minimal
amount is unavoidable, but you can end up shaving infinite yaks. This is a good time to drop a /* FIXME: ...*/
comment and move on.

6.17 Creating JSON APIs

Our JSON RPCs always return a top-level object. This allows us to add warnings (e.g. that we’re still starting up) or
other optional fields later.

Prefer to use JSON names which are already in use, or otherwise names from the BOLT specifications.

The same command should always return the same JSON format: this is why e.g. listchannels return an array
even if given an argument so there’s only zero or one entries.

All warning fields should have unique names which start with warning_, the value of which should be an expla-
nation. This allows for programs to deal with them sanely, and also perform translations.

6.18 Changing JSON APIs

All JSON API changes need a Changelog line (see below).

You can always add a new output JSON field (Changelog-Added), but you cannot remove one without going through
a 6-month deprecation cycle (Changelog-Deprecated)

So, only output it if deprecated-apis is true, so users can test their code is futureproof. In 6 months remove it
(Changelog-Removed).

Changing existing input parameters is harder, and should generally be avoided. Adding input parameters is possible,
but should be done cautiously as too many parameters gets unwieldy quickly.

6.19 Github Workflows

We have adopted a number of workflows to facilitate the development of c-lightning, and to make things more pleasant
for contributors.

50 Chapter 6. Care And Feeding of Your Fellow Coders

c-lightning, Release v0.9.0-45-g723b722-modded

6.19.1 Changelog Entries in Commit Messages

We are maintaining a changelog in the top-level directory of this project. However since every pull request has a
tendency to touch the file and therefore create merge-conflicts we decided to derive the changelog file from the pull
requests that were added between releases. In order for a pull request to show up in the changelog at least one of its
commits will have to have a line with one of the following prefixes:

• Changelog-Added: if the pull request adds a new feature

• Changelog-Changed: if a feature has been modified and might require changes on the user side

• Changelog-Deprecated: if a feature has been marked for deprecation, but not yet removed

• Changelog-Fixed: if a bug has been fixed

• Changelog-Removed: if a (previously deprecated) feature has been removed

• Changelog-Security: if a security issue has been addressed and the users will need to upgrade in order
to stay secure

In case you think the pull request is small enough not to require a changelog entry please use Changelog-None in
one of the commit messages to opt out.

Under some circumstances a feature may be removed even without deprecation warning if it was not part of a released
version yet, or the removal is urgent.

In order to ensure that each pull request has the required Changelog-*: line for the changelog our trusty @bitcoin-
bot will check logs whenever a pull request is created or updated and search for the required line. If there is no such
line it’ll mark the pull request as pending to call out the need for an entry.

6.19. Github Workflows 51

c-lightning, Release v0.9.0-45-g723b722-modded

52 Chapter 6. Care And Feeding of Your Fellow Coders

CHAPTER 7

Release checklist

Here’s a checklist for the release process.

7.1 Leading Up To The Release

1. Talk to team about whether there are any changes which MUST go in this release which may cause delay.

2. Look through outstanding issues, to identify any problems that might be necessary to fixup before the release.
Good candidates are reports of the project not building on different architectures or crashes.

3. Identify a good lead for each outstanding issue, and ask them about a fix timeline.

4. Create a milestone for the next release on Github, and go though open issues and PRs and mark accordingly.

5. Ask (via email) the most significant contributor who has not already named a release to name the release (use
devtools/credit to find this contributor). CC previous namers and team.

7.2 Preparing for -rc1

1. Check that CHANGELOG.md is well formatted, ordered in areas, covers all signficant changes, and sub-ordered
approximately by user impact & coolness.

2. Use devtools/changelog.py to collect the changelog entries from pull request commit messages and
merge them into the manually maintained CHANGELOG.md. This does API queries to GitHub, which are
severely ratelimited unless you use an API token: set the GH_TOKEN environment variable to a Personal Access
Token from https://github.com/settings/tokens

3. Create a new CHANGELOG.md heading to v-rc1, and create a link at the bottom. Note that you should exactly
copy the date and name format from a previous release, as the build-release.sh script relies on this.

4. Create a PR with the above.

53

c-lightning, Release v0.9.0-45-g723b722-modded

7.3 Releasing -rc1

1. Merge the above PR.

2. Tag it git pull && git tag -s v<VERSION>rc1. Note that you should get a prompt to give this tag
a ‘message’. Make sure you fill this in.

3. Confirm that the tag will show up for builds with git describe

4. Push the tag to remote git push --tags.

5. Update the /topic on #c-lightning on Freenode.

6. Prepare draft release notes (see devtools/credit), and share with team for editing.

7. Upgrade your personal nodes to the rc1, to help testing.

8. Test tools/build-release.sh to build the non-reprodicible images and reproducible zipfile.

9. Use the zipfile to produce a reproducible build.

7.4 Releasing -rc2, etc

1. Change rc1 to rc2 in CHANGELOG.md.

2. Add a PR with the rc2.

3. Tag it git pull && git tag -s v<VERSION>rc2 && git push --tags

4. Update the /topic on #c-lightning on Freenode.

5. Upgrade your personal nodes to the rc2.

7.5 Tagging the Release

1. Update the CHANGELOG.md; remove -rcN in both places, update the date.

2. Add a PR with that release.

3. Merge the PR, then git pull && git tag -s v<VERSION> && git push --tags.

4. Run tools/build-release.sh to build the non-reprodicible images and reproducible zipfile.

5. Use the zipfile to produce a reproducible build.

6. Create the checksums for signing: sha256sum release/* > release/SHA256SUMS

7. Create the first signature with gpg -sb --armor release/SHA256SUMS

8. Upload the files resulting files to github and save as a draft. (https://github.com/ElementsProject/lightning/releases/)

9. Ping the rest of the team to check the SHA256SUMS file and have them send their gpg -sb --armor
SHA256SUMS.

10. Append the signatures into a file called SHA256SUMS.asc, verify with gpg --verify SHA256SUMS.
asc and include the file in the draft release.

54 Chapter 7. Release checklist

c-lightning, Release v0.9.0-45-g723b722-modded

7.6 Performing the Release

1. Edit the GitHub draft and include the SHA256SUMS.asc file.

2. Publish the release as not a draft.

3. Update the /topic on #c-lightning on Freenode.

4. Send a mail to c-lightning and lightning-dev mailing lists, using the same wording as the Release Notes in
github.

7.7 Post-release

1. Look through PRs which were delayed for release and merge them.

2. Close out the Milestone for the now-shipped release.

3. Update this file with any missing or changed instructions.

7.6. Performing the Release 55

c-lightning, Release v0.9.0-45-g723b722-modded

56 Chapter 7. Release checklist

CHAPTER 8

Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog and this project adheres to Semantic Versioning.

8.1 0.9.0 - 2020-07-31: “Rat Poison Squared on Steroids”

8.1.1 Added

• plugin: pay was rewritten to use the new payment flow. See legacypay for old version (3809)

• plugin: pay will split payments that are failing due to their size into smaller parts, if recipient supports the
basic_mpp option (3809)

• plugin: pay will split large payments into parts of approximately 10k sat if the recipient supports the
basic_mpp option (3809)

• plugin: The pay plugin has a new --disable-mpp flag that allows opting out of the above two multi-part
payment addition. (3809)

• JSON-RPC: new low-level coin selection fundpsbt routine. (3825)

• JSON-RPC: The pay command now uses the new payment flow, the new legacypay command can be used
to issue payment with the legacy code if required. (3826)

• JSON-RPC: The keysend command allows sending to a node without requiring an invoice first. (3792)

• JSON-RPC: listfunds now has a ‘scriptpubkey’ field. (3821)

• docker: Docker build now includes LIGHTNINGD_NETWORK ENV variable which defaults to “bitcoin”. An
user can override this (e.g. by -e option in docker run) to run docker container in regtest or testnet or any
valid argument to --network. (3813)

• cli: We now install lightning-hsmtool for your hsm_secret needs. (3802)

• JSON-RPC: new call signpsbt which will add the wallet’s signatures to a provided psbt (3775)

57

https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html
https://github.com/ElementsProject/lightning/pull/3809
https://github.com/ElementsProject/lightning/pull/3809
https://github.com/ElementsProject/lightning/pull/3809
https://github.com/ElementsProject/lightning/pull/3809
https://github.com/ElementsProject/lightning/pull/3825
https://github.com/ElementsProject/lightning/pull/3826
https://github.com/ElementsProject/lightning/pull/3792
https://github.com/ElementsProject/lightning/pull/3821
https://github.com/ElementsProject/lightning/pull/3813
https://github.com/ElementsProject/lightning/pull/3802
https://github.com/ElementsProject/lightning/pull/3775

c-lightning, Release v0.9.0-45-g723b722-modded

• JSON-RPC: new call sendpsbt which will finalize and send a signed PSBT (3775)

• JSON-RPC: Adds two new rpc methods, reserveinputs and unreserveinputs, which allow for re-
serving or unreserving wallet UTXOs (3775)

• Python: pyln.spec.bolt{1,2,4,7} packages providing python versions of the spec text and defined
messages. (3777)

• pyln: new module pyln.proto.message.bolts (3733)

• cli: New --flat mode for easy grepping of lightning-cli output. (3722)

• plugins: new notification type, coin_movement, which tracks all fund movements for a node (3614)

• plugin: Added a new commitment_revocation hook that provides the plugin with penalty transactions for
all revoked transactions, e.g., to push them to a watchtower. (3659)

• JSON-API: listchannels now shows channel features. (3685)

• plugin: New invoice_creation plugin event (3658)

• docs: Install documentation now has information about building for Alpine linux (3660)

• plugin: Plugins can opt out of having an RPC connection automatically initialized on startup. (3857)

• JSON-RPC: sendonion has a new optional bolt11 argument for when it’s used to pay an invoice. (3878)

• JSON-RPC: sendonion has a new optional msatoshi that is used to annotate the payment with the amount
received by the destination. (3878)

8.1.2 Changed

• JSON-RPC: fundchannel_cancel no longer requires its undocumented channel_id argument after
fundchannel_complete. (3787)

• JSON-RPC: fundchannel_cancel will now succeed even when executed while a
fundchannel_complete is ongoing; in that case, it will be considered as cancelling the funding
after the fundchannel_complete succeeds. (3778)

• JSON-RPC: listfunds ‘outputs’ now includes reserved outputs, designated as ‘reserved’ = true (3764)

• JSON-RPC: txprepare now prepares transactions whose nLockTime is set to the tip blockheight, instead
of using 0. fundchannel will use nLockTime set to the tip blockheight as well. (3797)

• build: default compile output is prettier and much less verbose (3686)

• config: the plugin-disable option now works even if specified before the plugin is found. (3679)

• plugins: The autoclean plugin is no longer dynamic (you cannot manage it with the plugin RPC command
anymore). (3788)

• plugin: The paystatus output changed as a result of the payment flow rework (3809)

8.1.3 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

• JSON-RPC: the legacypay method from the pay plugin will be removed after pay proves stable (3809)

58 Chapter 8. Changelog

https://github.com/ElementsProject/lightning/pull/3775
https://github.com/ElementsProject/lightning/pull/3775
https://github.com/ElementsProject/lightning/pull/3777
https://github.com/ElementsProject/lightning/pull/3733
https://github.com/ElementsProject/lightning/pull/3722
https://github.com/ElementsProject/lightning/pull/3614
https://github.com/ElementsProject/lightning/pull/3659
https://github.com/ElementsProject/lightning/pull/3685
https://github.com/ElementsProject/lightning/pull/3658
https://github.com/ElementsProject/lightning/pull/3660
https://github.com/ElementsProject/lightning/pull/3857
https://github.com/ElementsProject/lightning/pull/3878
https://github.com/ElementsProject/lightning/pull/3881
https://github.com/ElementsProject/lightning/pull/3787
https://github.com/ElementsProject/lightning/pull/3778
https://github.com/ElementsProject/lightning/pull/3764
https://github.com/ElementsProject/lightning/pull/3797
https://github.com/ElementsProject/lightning/pull/3686
https://github.com/ElementsProject/lightning/pull/3679
https://github.com/ElementsProject/lightning/pull/3788
https://github.com/ElementsProject/lightning/pull/3809
https://github.com/ElementsProject/lightning/pull/3809

c-lightning, Release v0.9.0-45-g723b722-modded

8.1.4 Removed

• protocol: support for optional fields of the reestablish message are now compulsory. (3782)

8.1.5 Fixed

• JSON-RPC: Reject some bad JSON at parsing. (3761)

• JSON-RPC: The feerate parameters now correctly handle the standardness minimum when passed as
perkb. (3772)

• JSON-RPC: listtransactions now displays all txids as little endian (3741)

• JSON-RPC: pay now respects maxfeepercent, even for tiny amounts. (3693)

• JSON-RPC: withdraw and txprepare feerate can be a JSON number. (3821)

• bitcoin: lightningd now always exits if the Bitcoin backend failed unexpectedly. (3675)

• cli: Bash completion on lightning-cli now works again (3719)

• config: we now take the --commit-fee parameter into account. (3732)

• db: Fixed a failing assertion if we reconnect to a peer that we had a channel with before, and then attempt to
insert the peer into the DB twice. (3801)

• hsmtool: Make the password argument optional for guesstoremote and dumpcommitments sub-
commands, as shown in our documentation and help text. (3822)

• macOS: Build for macOS Catalina / Apple clang v11.0.3 fixed (3756)

• protocol: Fixed a deviation from BOLT#2: if both nodes advertised
option_upfront_shutdown_script feature: MUST include . . . a zero-length
shutdown_scriptpubkey. (3816)

• wumbo: negotiate successfully with Eclair nodes. (3712)

• plugin: bcli no longer logs a harmless warning about being unable to connect to the JSON-RPC interface.
(3857)

8.1.6 Security

8.2 0.8.2 - 2020-04-30: “A Scalable Ethereum Blockchain”

This release was named by @arowser.

8.2.1 Added

• pay: The keysend plugin implements the ability to receive spontaneous payments (keysend) (3611)

• Plugin: the Bitcoin backend plugin API is now final. (3620)

• Plugin: htlc_accepted hook can now offer a replacement onion payload. (3611)

• Plugin: feature_set object added to init (3612)

• Plugin: ‘flag’-type option now available. (3586)

8.2. 0.8.2 - 2020-04-30: “A Scalable Ethereum Blockchain” 59

https://github.com/ElementsProject/lightning/pull/3782
https://github.com/ElementsProject/lightning/pull/3761
https://github.com/ElementsProject/lightning/pull/3772
https://github.com/ElementsProject/lightning/pull/3741
https://github.com/ElementsProject/lightning/pull/3693
https://github.com/ElementsProject/lightning/pull/3821
https://github.com/ElementsProject/lightning/pull/3675
https://github.com/ElementsProject/lightning/pull/3719
https://github.com/ElementsProject/lightning/pull/3732
https://github.com/ElementsProject/lightning/pull/3801
https://github.com/ElementsProject/lightning/pull/3822
https://github.com/ElementsProject/lightning/pull/3756
https://github.com/ElementsProject/lightning/pull/3816
https://github.com/ElementsProject/lightning/pull/3712
https://github.com/ElementsProject/lightning/pull/3857
https://github.com/ElementsProject/lightning/pull/3611
https://github.com/ElementsProject/lightning/pull/3620
https://github.com/ElementsProject/lightning/pull/3611
https://github.com/ElementsProject/lightning/pull/3612
https://github.com/ElementsProject/lightning/pull/3586

c-lightning, Release v0.9.0-45-g723b722-modded

• JSON API: New getsharedsecret command, which lets you compute a shared secret with this node know-
ing only a public point. This implements the BOLT standard of hashing the ECDH point, and is incompatible
with ECIES. (3490)

• JSON API: large-channels option to negotiate opening larger channels. (3612)

• JSON API: New optional parameter to the close command to control the closing transaction fee negotiation
back off step (3390)

• JSON API: connect returns features of the connected peer on success. (3612)

• JSON API: listpeers now has receivable_msat (3572)

• JSON API: The fields “opening”, “mutual_close”, “unilateral_close”, “delayed_to_us”, “htlc_resolution” and
“penalty” have been added to the feerates command. (3570)

• JSON API: “htlc_timeout_satoshis” and “htlc_success_satoshis” fields have been added to the feerates com-
mand. (3570)

• pyln now sends proper error on bad calls to plugin methods (3640)

• devtools: The onion tool can now generate, compress and decompress onions for rendez-vous routing (3557)

• doc: An FAQ was added, accessible at https://lightning.readthedocs.io/FAQ.html (3551)

8.2.2 Changed

• We now use a higher feerate for resolving onchain HTLCs and for penalty transactions (3592)

• We now announce multiple addresses of the same type, if given. (3609)

• pay: Improved the performance of the pay-plugin by limiting the listchannels when computing the
shadow route. (3617)

• JSON API: invoice exposeprivatechannels now includes explicitly named channels even if they
seem like dead-ends. (3633)

• Added workaround for lnd rejecting our commitment_signed when we send an update_fee after channel con-
firmed. (3634)

• We now batch the requests for fee estimation to our Bitcoin backend. (3570)

• We now get more fine-grained fee estimation from our Bitcoin backend. (3570)

• Forwarding messages is now much faster (less inter-daemon traffic) (3547)

• dependencies: We no longer depend on python2 which has reached end-of-life (3552)

8.2.3 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

• JSON API: fundchannel_start satoshi field really deprecated now (use amount). (3603)

• JSON API: The “urgent”, “slow”, and “normal” field of the feerates command are now deprecated. (3570)

• JSON API: Removed double wrapping of rpc_command payload in rpc_command JSON field. (3560)

• Plugins: htlc_accepted_hook “failure_code” only handles simple cases now, use “failure_message”. (3472)

• Plugins: invoice_payment_hook “failure_code” only handles simple cases now, use “failure_message”. (3472)

60 Chapter 8. Changelog

https://github.com/ElementsProject/lightning/pull/3490
https://github.com/ElementsProject/lightning/pull/3612
https://github.com/ElementsProject/lightning/pull/3390
https://github.com/ElementsProject/lightning/pull/3612
https://github.com/ElementsProject/lightning/pull/3572
https://github.com/ElementsProject/lightning/pull/3570
https://github.com/ElementsProject/lightning/pull/3570
https://github.com/ElementsProject/lightning/pull/3640
https://github.com/ElementsProject/lightning/pull/3557
https://github.com/ElementsProject/lightning/pull/3551
https://github.com/ElementsProject/lightning/pull/3592
https://github.com/ElementsProject/lightning/pull/3609
https://github.com/ElementsProject/lightning/pull/3617
https://github.com/ElementsProject/lightning/pull/3633
https://github.com/ElementsProject/lightning/pull/3634
https://github.com/ElementsProject/lightning/pull/3570
https://github.com/ElementsProject/lightning/pull/3570
https://github.com/ElementsProject/lightning/pull/3547
https://github.com/ElementsProject/lightning/pull/3552
https://github.com/ElementsProject/lightning/pull/3603
https://github.com/ElementsProject/lightning/pull/3570
https://github.com/ElementsProject/lightning/pull/3560
https://github.com/ElementsProject/lightning/pull/3472
https://github.com/ElementsProject/lightning/pull/3472

c-lightning, Release v0.9.0-45-g723b722-modded

8.2.4 Removed

• JSON API: listnodes globalfeatures output (features since in 0.7.3). (3603)

• JSON API: listpeers localfeatures and globalfeatures output (features since in 0.7.3).
(3603)

• JSON API: peer_connected hook localfeatures and globalfeatures output (features since
in 0.7.3). (3603)

• JSON API: fundchannel and fundchannel_start satoshi parameter removed (renamed to amount
in 0.7.3). (3603)

• JSON API: close force parameter removed (deprecated in 0.7.2.1) (3603)

• JSON API: sendpay description parameter removed (renamed to label in 0.7.0). (3603)

8.2.5 Fixed

• Plugins: A crashing plugin will no longer cause a hook call to be delayed indefinitely (3539)

• Plugins: setting an ‘init’ feature bit allows us to accept it from peers. (3609)

• Plugins: if an option has a type int or bool, return the option as that type to the plugin’s init (3582)

• Plugins: Plugins no longer linger indefinitely if their process terminates (3539)

• JSON API: Pending RPC method calls are now terminated if the handling plugin exits prematurely. (3639)

• JSON API: fundchannel_start returns amount even when deprecated APIs are enabled. (3603)

• JSON API: Passing 0 as minconf to withdraw allows you to use unconfirmed transaction outputs, even if explic-
itly passed as the utxos parameter (3593)

• JSON API: txprepare doesn’t crash lightningd anymore if you pass unconfirmed utxos (3534)

• invoice: The invoice parser assumed that an amount without a multiplier was denominated in msatoshi instead
of bitcoins. (3636)

• pay: The pay-plugin was generating non-contiguous shadow routes (3617)

• pay would crash on expired waits with tried routes (3630)

• pay would crash when attempting to find cheaper route with exemptfee (3630)

• Multiple definition of chainparams on Fedora (or other really recent gcc) (3631)

• bcli now handles 0msat outputs in gettxout. (3605)

• Fix assertion on reconnect if we fail to run openingd. (3604)

• Use lightning-rfc #740 feespike margin factor of 2 (3589)

• Always broadcast the latest close transaction at the end of the close fee negotiation, instead of sometimes
broadcasting the peer’s initial closing proposal. (3556)

8.2.6 Security

8.3 0.8.1 - 2020-02-12: “Channel to the Moon”

This release named by Vasil Dimov @vasild.

8.3. 0.8.1 - 2020-02-12: “Channel to the Moon” 61

https://github.com/ElementsProject/lightning/pull/3603
https://github.com/ElementsProject/lightning/pull/3603
https://github.com/ElementsProject/lightning/pull/3603
https://github.com/ElementsProject/lightning/pull/3603
https://github.com/ElementsProject/lightning/pull/3603
https://github.com/ElementsProject/lightning/pull/3603
https://github.com/ElementsProject/lightning/pull/3539
https://github.com/ElementsProject/lightning/pull/3609
https://github.com/ElementsProject/lightning/pull/3582
https://github.com/ElementsProject/lightning/pull/3539
https://github.com/ElementsProject/lightning/pull/3639
https://github.com/ElementsProject/lightning/pull/3603
https://github.com/ElementsProject/lightning/pull/3593
https://github.com/ElementsProject/lightning/pull/3534
https://github.com/ElementsProject/lightning/pull/3636
https://github.com/ElementsProject/lightning/pull/3617
https://github.com/ElementsProject/lightning/pull/3630
https://github.com/ElementsProject/lightning/pull/3630
https://github.com/ElementsProject/lightning/pull/3631
https://github.com/ElementsProject/lightning/pull/3605
https://github.com/ElementsProject/lightning/pull/3604
https://github.com/ElementsProject/lightning/pull/3589
https://github.com/ElementsProject/lightning/pull/3556

c-lightning, Release v0.9.0-45-g723b722-modded

8.3.1 Added

• Plugin: pluggable backends for Bitcoin data queries, default still bitcoind (using bitcoin-cli). (3488)

• Plugin: Plugins can now signal support for experimental protocol extensions by registering featurebits for
node_announcements, the connection handshake, and for invoices. For now this is limited to non-dynamic
plugins only (3477)

• Plugin: ‘plugin start’ now restores initial umask before spawning the plugin process (3375)

• JSON API: fundchannel and fundchannel_start can now accept an optional parameter, push_msat,
which will gift that amount of satoshis to the peer at channel open. (3369)

• JSON API: waitanyinvoice now supports a timeout parameter, which when set will cause the command
to fail if unpaid after timeout seconds (can be 0). (3449)

• Config: --rpc-file-mode sets permissions on the JSON-RPC socket. (3437)

• Config: --subdaemon allows alternate subdaemons. (3372)

• lightningd: Optimistic locking prevents instances from running concurrently against the same database, provid-
ing linear consistency to changes. (3358)

• hsmd: Added fields to hsm_sign_remote_commitment_tx to allow complete validation by signing daemon.
(3363)

• Wallet: withdrawal transactions now sets nlocktime to the current tip. (3465)

• elements: Added support for the dynafed block header format and elementsd >=0.18.1 (3440)

8.3.2 Changed

• JSON API: The hooks db_write, invoice_payment, and rpc_command now accept { "result":
"continue" } to mean “do default action”. (3475)

• Plugin: Multiple plugins can now register for the htlc_accepted hook. (3489)

• JSON API: listforwards now shows out_channel even if we couldn’t forward.

• JSON API: funchannel_cancel: only the opener of a fundchannel can cancel the channel open (3336)

• JSON API: sendpay optional msatoshi param for non-MPP (if set), must be the exact amount sent to the
final recipient. (3470)

• JSON API: waitinvoice now returns error code 903 to designate that the invoice expired during wait, instead
of the previous -2 (3441)

• JSON_API: The connect command now returns its own error codes instead of a generic -1. (3397)

• Plugin: notify_sendpay_success and notify_sendpay_failure are now always called, even if
there is no command waiting on the result. (3405)

• hsmtool: hsmtool now creates its backup copy in the same directory as the original hsm_secret file. (3409)

• JSON API: invoice exposeprivatechannels can specify exact channel candidates. (3351)

• JSON API: db_write new field data_version which contains a numeric transaction counter. (3358)

• JSON API: plugin stop result is now accessible using the result key instead of the empty (‘’) key. (3374)

• lightning-cli: specifying --rpc-file (without --network) has been restored. (3353)

62 Chapter 8. Changelog

https://github.com/ElementsProject/lightning/pull/3488
https://github.com/ElementsProject/lightning/pull/3477
https://github.com/ElementsProject/lightning/pull/3375
https://github.com/ElementsProject/lightning/pull/3369
https://github.com/ElementsProject/lightning/pull/3449
https://github.com/ElementsProject/lightning/pull/3437
https://github.com/ElementsProject/lightning/pull/3372
https://github.com/ElementsProject/lightning/pull/3358
https://github.com/ElementsProject/lightning/pull/3363
https://github.com/ElementsProject/lightning/pull/3465
https://github.com/ElementsProject/lightning/pull/3440
https://github.com/ElementsProject/lightning/pull/3475
https://github.com/ElementsProject/lightning/pull/3489
https://github.com/ElementsProject/lightning/pull/3336
https://github.com/ElementsProject/lightning/pull/3470
https://github.com/ElementsProject/lightning/pull/3441
https://github.com/ElementsProject/lightning/pull/3397
https://github.com/ElementsProject/lightning/pull/3405
https://github.com/ElementsProject/lightning/pull/3409
https://github.com/ElementsProject/lightning/pull/3351
https://github.com/ElementsProject/lightning/pull/3358
https://github.com/ElementsProject/lightning/pull/3374
https://github.com/ElementsProject/lightning/pull/3353

c-lightning, Release v0.9.0-45-g723b722-modded

8.3.3 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

• JSON API: The hook db_write returning true: use { "result": "continue" }. (3475)

• JSON API: The hook invoice_payment returning {}: use { "result": "continue" }. (3475)

• JSON API: The hook rpc_command returning {"continue": true}: use { "result":
"continue" }. (3475)

• JSON API: plugin stop result with an empty (“”) key: use “result”. (3374)

8.3.4 Removed

• Plugin: Relative plugin paths are not relative to startup (deprecated v0.7.2.1) (3471)

• JSON API: Dummy fields in listforwards (deprecated v0.7.2.1) (3471)

8.3.5 Fixed

• Doc: Corrected and expanded lightning-listpeers.7 documentation. (3497)

• Doc: Fixed factual errors in lightning-listchannels.7 documentation. (3494)

• Protocol: Corner case where channel could become unusable (https://github.com/lightningnetwork/lightning-
rfc/issues/728) (3500)

• Plugins: Dynamic C plugins can now be managed when lightningd is up (3480)

• Doc: connect: clarified failure problems and usage. (3459)

• Doc: fundchannel: clarify that we automatically connects if your node knows how. (3459)

• Protocol: Now correctly reject “fees” paid when we’re the final hop (lightning-rfc#711) (3474)

• JSON API: txprepare no longer crashes when more than two outputs are specified (3384)

• Pyln: now includes the “jsonrpc” field to jsonrpc2 requests (3442)

• Plugin: pay now detects a previously non-permanent error (final_cltv_too_soon) that has been merged
into a permanent error (incorrect_or_unknown_payment_details), and retries. (3376)

• JSON API: The arguments for createonion are now checked to ensure they fit in the onion packet. (3404)

• TOR: We don’t send any further request if the return code of connect is not zero or error. (3408)

• Build: Developer mode compilation on FreeBSD. (3344)

• Protocol: We now reject invoices which ask for sub-millisatoshi amounts (3481)

8.3.6 Security

8.4 0.8.0 - 2019-12-16: “Blockchain Good, Orange Coin Bad”

This release was named by Michael Schmoock @m-schmoock.

8.4. 0.8.0 - 2019-12-16: “Blockchain Good, Orange Coin Bad” 63

https://github.com/ElementsProject/lightning/pull/3475
https://github.com/ElementsProject/lightning/pull/3475
https://github.com/ElementsProject/lightning/pull/3475
https://github.com/ElementsProject/lightning/pull/3374
https://github.com/ElementsProject/lightning/pull/3471
https://github.com/ElementsProject/lightning/pull/3471
https://github.com/ElementsProject/lightning/pull/3497
https://github.com/ElementsProject/lightning/pull/3494
https://github.com/ElementsProject/lightning/pull/3500
https://github.com/ElementsProject/lightning/pull/3480
https://github.com/ElementsProject/lightning/pull/3459
https://github.com/ElementsProject/lightning/pull/3459
https://github.com/ElementsProject/lightning/pull/3474
https://github.com/ElementsProject/lightning/pull/3384
https://github.com/ElementsProject/lightning/pull/3442
https://github.com/ElementsProject/lightning/pull/3376
https://github.com/ElementsProject/lightning/pull/3404
https://github.com/ElementsProject/lightning/pull/3408
https://github.com/ElementsProject/lightning/pull/3344
https://github.com/ElementsProject/lightning/pull/3481

c-lightning, Release v0.9.0-45-g723b722-modded

8.4.1 Added

• JSON API: Added createonion and sendonion JSON-RPC methods allowing the implementation of
custom protocol extensions that are not directly implemented in c-lightning itself. (3260)

• JSON API: listinvoices now displays the payment preimage if the invoice was paid. (3295)

• JSON API: listpeers channels now include close_to and close_to_addr iff a close_to address
was specified at channel open (3223)

• The new pyln-testing package now contains the testing infrastructure so it can be reused to test against
c-lightning in external projects (3218)

• config: configuration files now support include. (3268)

• options: Allow the Tor inbound service port differ from 9735 (3155)

• options: Persistent Tor address support (3155)

• plugins: A new plugin hook, rpc_command allows a plugin to take over lightningd for any RPC com-
mand. (2925)

• plugins: Allow the accepter to specify an upfront_shutdown_script for a channel via a close_to field in
the openchannel hook result (3280)

• plugins: Plugins may now handle modern TLV-style payloads via the htlc_accepted hook (3260)

• plugins: libplugin now supports writing plugins which register to hooks (3317)

• plugins: libplugin now supports writing plugins which register to notifications (3317)

• protocol: Payment amount fuzzing is restored, but through shadow routing. (3212)

• protocol: We now signal the network we are running on at init. (3300)

• protocol: can now send and receive TLV-style onion messages. (3335)

• protocol: can now send and receive BOLT11 payment_secrets. (3335)

• protocol: can now receive basic multi-part payments. (3335)

• JSON RPC: low-level commands sendpay and waitsendpay can now be used to manually send multi-part pay-
ments. (3335)

• quirks: Workaround LND’s reply_channel_range issues instead of sending error. (3264)

• tools: A new command, guesstoremote, is added to the hsmtool. It is meant to be used to recover funds
after an unilateral close of a channel with option_static_remotekey enabled. (3292)

8.4.2 Changed

:warning: The default network and the default location of the lightning home directory changed. Please make sure that
the configuration, key file and database are moved into the network-specific subdirectory.

• config: Default network (new installs) is now bitcoin, not testnet. (3268)

• config: Lightning directory, plugins and files moved into <network>/ subdir (3268)

• JSON API: The fundchannel command now tries to connect to the peer before funding the channel, no need
to connect before fundchannel if an address for the peer is known (3314)

• JSON API: htlc_accepted hook has type (currently legacy or tlv) and other fields directly inside
onion. (3167)

• JSON API: lightning_ prefixes removed from subdaemon names, including in listpeers owner field. (3241)

64 Chapter 8. Changelog

https://github.com/ElementsProject/lightning/pull/3260
https://github.com/ElementsProject/lightning/pull/3295
https://github.com/ElementsProject/lightning/pull/3223
https://github.com/ElementsProject/lightning/pull/3218
https://github.com/ElementsProject/lightning/pull/3268
https://github.com/ElementsProject/lightning/pull/3155
https://github.com/ElementsProject/lightning/pull/3155
https://github.com/ElementsProject/lightning/pull/2925
https://github.com/ElementsProject/lightning/pull/3280
https://github.com/ElementsProject/lightning/pull/3260
https://github.com/ElementsProject/lightning/pull/3317
https://github.com/ElementsProject/lightning/pull/3317
https://github.com/ElementsProject/lightning/pull/3212
https://github.com/ElementsProject/lightning/pull/3300
https://github.com/ElementsProject/lightning/pull/3335
https://github.com/ElementsProject/lightning/pull/3335
https://github.com/ElementsProject/lightning/pull/3335
https://github.com/ElementsProject/lightning/pull/3335
https://github.com/ElementsProject/lightning/pull/3264
https://github.com/ElementsProject/lightning/pull/3292
https://github.com/ElementsProject/lightning/pull/3268
https://github.com/ElementsProject/lightning/pull/3268
https://github.com/ElementsProject/lightning/pull/3314
https://github.com/ElementsProject/lightning/pull/3167
https://github.com/ElementsProject/lightning/pull/3241

c-lightning, Release v0.9.0-45-g723b722-modded

• JSON API: listconfigs now structures plugins and include their options (3283)

• JSON API: the raw_payload now includes the first byte, i.e., the realm byte, of the payload as well. This
allows correct decoding of a TLV payload in the plugins. (3261)

• logging: formatting made uniform: [NODEID-]SUBSYSTEM: MESSAGE (3241)

• options: config and <network>/config read by default. (3268)

• options: log-level can now specify different levels for different subsystems. (3241)

• protocol: The TLV payloads for the onion packets are no longer considered an experimental feature and gener-
ally available. (3260)

• quirks: We’ll now reconnect and retry if we get an error on an established channel. This works around lnd
sending error messages that may be non-fatal. (3340)

:warning: If you don’t have a config file, you now may need to specify the network to lightning-cli (3268)

8.4.3 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

• JSON API: listconfigs duplicated “plugin” paths (3283)

• JSON API: htlc_accepted hook per_hop_v0 object deprecated, as is short_channel_id for the
final hop. (3167)

8.4.4 Removed

• JSON: listpays won’t shown payments made via sendpay without a bolt11 string, or before 0.7.0. (3309)

8.4.5 Fixed

• JSON API: #3231 listtransactions crash (3256)

• JSON API: listconfigs appends ‘. . . ’ to truncated config options. (3268)

• pyln-client now handles unicode characters in JSON-RPC requests and responses correctly. (3018)

• bitcoin: If bitcoind goes backwards (e.g. reindex) refuse to start (unless forced with –rescan). (3274)

• bug: gossipd crash on huge number of unknown channels. (3273)

• gossip: No longer discard most node_announcements (fixes #3194) (3262)

• options: We disable all dns even on startup the scan for bogus dns servers, if --always-use-proxy is set
true (3251)

• protocol: “Bad commitment signature” closing channels when we sent back-to-back update_fee messages across
multiple reconnects. (3329)

• protocol: Unlikely corner case is simultanous HTLCs near balance limits fixed. (3286)

8.4. 0.8.0 - 2019-12-16: “Blockchain Good, Orange Coin Bad” 65

https://github.com/ElementsProject/lightning/pull/3283
https://github.com/ElementsProject/lightning/pull/3261
https://github.com/ElementsProject/lightning/pull/3241
https://github.com/ElementsProject/lightning/pull/3268
https://github.com/ElementsProject/lightning/pull/3241
https://github.com/ElementsProject/lightning/pull/3260
https://github.com/ElementsProject/lightning/pull/3340
https://github.com/ElementsProject/lightning/pull/3268
https://github.com/ElementsProject/lightning/pull/3283
https://github.com/ElementsProject/lightning/pull/3167
https://github.com/ElementsProject/lightning/pull/3309
https://github.com/ElementsProject/lightning/pull/3256
https://github.com/ElementsProject/lightning/pull/3268
https://github.com/ElementsProject/lightning/pull/3018
https://github.com/ElementsProject/lightning/pull/3274
https://github.com/ElementsProject/lightning/pull/3273
https://github.com/ElementsProject/lightning/pull/3262
https://github.com/ElementsProject/lightning/pull/3251
https://github.com/ElementsProject/lightning/pull/3329
https://github.com/ElementsProject/lightning/pull/3286

c-lightning, Release v0.9.0-45-g723b722-modded

8.4.6 Security

8.5 0.7.3 - 2019-10-18: “Bitcoin’s Proof of Stake”

This release was named by @trueptolemy.

8.5.1 Added

• DB: lightningd now supports different SQL backends, instead of the default which is sqlite3. Adds a Post-
gresSQL driver

• elements: Add support of Liquid-BTC on elements

• JSON API: close now accepts an optional parameter destination, to which the to-local output will be
sent.

• JSON API: txprepare and withdraw now accept an optional parameter utxos, a list of utxos to include
in the prepared transaction

• JSON API: listfunds now lists a blockheight for confirmed transactions, and has connected and state
fields for channels, like listpeers.

• JSON API: fundchannel_start now includes field scriptpubkey

• JSON API: New method listtransactions

• JSON API: signmessage will now create a signature from your node on a message; checkmessage will
verify it.

• JSON API: fundchannel_start now accepts an optional parameter close_to, the address to which these
channel funds should be sent to on close. Returns using_close_to if will use.

• Plugin: new notifications sendpay_success and sendpay_failure.

• Protocol: nodes now announce features in node_announcement broadcasts.

• Protocol: we now offer option_gossip_queries_ex for finegrained gossip control.

• Protocol: we now retransmit funding_locked upon reconnection while closing if there was no update

• Protocol: no longer ask for initial_routing_sync (only affects ancient peers).

• bolt11: support for parsing feature bits (field 9).

• Wallet: we now support the encryption of the BIP32 master seed (a.k.a. hsm_secret).

• pylightning: includes implementation of handshake protocol

8.5.2 Changed

• Build: Now requires gettext

• JSON API: The parameter exclude of getroute now also support node-id.

• JSON API: txprepare now uses outputs as parameter other than destination and satoshi

• JSON API: fundchannel_cancel is extended to work before funding broadcast.

• JSON-API: pay can exclude error nodes if the failcode of sendpay has the NODE bit set

66 Chapter 8. Changelog

https://www.gnu.org/software/gettext/

c-lightning, Release v0.9.0-45-g723b722-modded

• JSON API: The plugin command now returns on error. A timeout of 20 seconds is added to start and
startdir subcommands at the end of which the plugin is errored if it did not complete the handshake with
lightningd.

• JSON API: The plugin command does not allow to start static plugins after lightningd startup anymore.

• Protocol: We now push our own gossip to all peers, independent of their filter.

• Protocol: Now follows spec in responses to short channel id queries on unknown chainhashes

• Tor: We default now with autotor to generate if possible temporary ED25519-V3 onions. You can use new
option enable-autotor-v2-mode to fallback to V2 RSA1024 mode.

8.5.3 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

• JSON API: fundchannel now uses amount as the parameter name to replace satoshi

• JSON API: fundchannel_start now uses amount as the parameter name to replace satoshi

• JSON API: listpeers and listnodes fields localfeatures and globalfeatures (now just
features).

• Plugin: peer_connected hook fields localfeatures and globalfeatures (now just features).

8.5.4 Removed

• JSON API: short_channel_id parameters in JSON commands with : separators (deprecated since 0.7.0).

• JSON API: description parameters in pay and sendpay (deprecated since 0.7.0).

• JSON API: description output field in waitsendpay and sendpay (deprecated since 0.7.0).

• JSON API: listpayments (deprecated since 0.7.0).

8.5.5 Fixed

• Fixed bogus “Bad commit_sig signature” which caused channel closures when reconnecting after updating fees
under simultaneous bidirectional traffic.

• Relative --lightning_dir is now working again.

• Build: MacOS now builds again (missing pwritev).

8.5.6 Security

8.6 0.7.2.1 - 2019-08-19: “Nakamoto’s Pre-approval by US Congress”

This release was named by Antoine Poinsot @darosior.

(Technically a .1 release, as it contains last-minute fixes after 0.7.2 was tagged)

8.6. 0.7.2.1 - 2019-08-19: “Nakamoto’s Pre-approval by US Congress” 67

c-lightning, Release v0.9.0-45-g723b722-modded

8.6.1 Added

• JSON API: a new command plugin allows one to manage plugins without restarting lightningd.

• Plugin: a new boolean field can be added to a plugin manifest, dynamic. It allows a plugin to tell if it can be
started or stopped “on-the-fly”.

• Plugin: a new boolean field is added to the init’s configuration, startup. It allows a plugin to know
if it has been started on lightningd startup.

• Plugin: new notifications invoice_payment, forward_event and channel_opened.

• Protocol: --enable-experimental-features adds gossip query extensions aka
https://github.com/lightningnetwork/lightning-rfc/pull/557

• contrib: new bootstrap-node.sh to connect to random mainnet nodes.

• JSON API: listfunds now returns also funding_output for channels

• Plugin: plugins can now suggest lightning-cli default to -H for responses.

• Lightningd: add support for signet networks using the --network=signet or --signet startup option

8.6.2 Changed

• Build: now requires python3-mako to be installed, i.e. sudo apt-get install python3-mako

• JSON API: close optional arguments have changed: it now defaults to unilateral close after 48 hours.

• Plugin: if the config directory has a plugins subdirectory, those are loaded.

• lightningd: check bitcoind version when setup topology and confirm the version not older than v0.15.0.

• Protocol: space out reconnections on startup if we have more than 5 peers.

• JSON API: listforwards includes the ‘payment_hash’ field.

• Plugin: now plugins always run from the lightning-dir for easy local storage.

8.6.3 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

• Plugin: using startup-relative paths for plugin and plugin-dir: they’re now relative to lightning-dir.

• JSON API: listforwards removed dummy (zero) fields for out_msat, fee_msat, in_channel and
out_channel if unknown (i.e. deleted from db, or status is local-failed.

8.6.4 Removed

8.6.5 Fixed

• Plugin: pay no longer crashes on timeout.

• Plugin: disconnect notifier now called if remote side disconnects.

• channeld: ignore, and simply try reconnecting if lnd sends “sync error”.

• Protocol: we now correctly ignore unknown odd messages.

68 Chapter 8. Changelog

c-lightning, Release v0.9.0-45-g723b722-modded

• wallet: We will now backfill blocks below our wallet start height on demand when we require them to verify
gossip messages. This fixes an issue where we would not remove channels on spend that were opened below
that start height because we weren’t tracking the funding output.

• Detect when we’re still syncing with bitcoin network: don’t send or receive HTLCs or allow fundchannel.

• Rare onchaind error where we don’t recover our own unilateral close with multiple same-preimage HTLCs
fixed.

8.6.6 Security

8.7 0.7.1 - 2019-06-29: “The Unfailing Twitter Consensus Algorithm”

This release was named by (C-Lightning Core Team member) Lisa Neigut @niftynei.

8.7.1 Added

• Protocol: we now enforce option_upfront_shutdown_script if a peer negotiates it.

• JSON API: New command setchannelfee sets channel specific routing fees.

• JSON API: new withdraw methods txprepare, txsend and txdiscard.

• JSON API: add three new RPC commands: fundchannel_start, fundchannel_complete and
fundchannel_cancel. Allows a user to initiate and complete a channel open using funds that are in a
external wallet.

• Plugin: new hooks db_write for intercepting database writes, invoice_payment for intercepting invoices
before they’re paid, openchannel for intercepting channel opens, and htlc_accepted to decide whether
to resolve, reject or continue an incoming or forwarded payment..

• Plugin: new notification warning to report any LOG_UNUSUAL/LOG_BROKEN level event.

• Plugin: Added a default plugin directory : lightning_dir/plugins. Each plugin directory it contains
will be added to lightningd on startup.

• Plugin: the connected hook can now send an error_message to the rejected peer.

• JSON API: newaddr outputs bech32 or p2sh-segwit, or both with new all parameter (#2390)

• JSON API: listpeers status now shows how many confirmations until channel is open (#2405)

• Config: Adds parameter min-capacity-sat to reject tiny channels.

• JSON API: listforwards now includes the time an HTLC was received and when it was resolved. Both are
expressed as UNIX timestamps to facilitate parsing (Issue #2491, PR #2528)

• JSON API: listforwards now includes the local_failed forwards with failcode (Issue #2435, PR #2524)

• DB: Store the signatures of channel announcement sent from remote peer into DB, and init channel with signa-
tures from DB directly when reenable the channel. (Issue #2409)

• JSON API: listchannels has new fields htlc_minimum_msat and htlc_maximum_msat.

8.7.2 Changed

• Gossip: we no longer compact the gossip_store file dynamically, due to lingering bugs. Restart if it gets
too large.

8.7. 0.7.1 - 2019-06-29: “The Unfailing Twitter Consensus Algorithm” 69

https://github.com/ElementsProject/lightning/issues/2491
https://github.com/ElementsProject/lightning/pull/2528
https://github.com/ElementsProject/lightning/issues/2435
https://github.com/ElementsProject/lightning/pull/2524
https://github.com/ElementsProject/lightning/issues/2409

c-lightning, Release v0.9.0-45-g723b722-modded

• Protocol: no longer ask for entire gossip flood from peers, unless we’re missing gossip.

• JSON API: invoice expiry defaults to 7 days, and can have s/m/h/d/w suffixes.

• Config: Increased default amount for minimal channel capacity from 1k sat to 10k sat.

• JSON API: A new parameter is added to fundchannel, which now accepts an utxo array to use to fund the
channel.

• Build: Non-developer builds are now done with “-Og” optimization.

• JSON API: pay will no longer return failure until it is no longer retrying; previously it could “timeout” but still
make the payment.

• JSON API: the command objects that help outputs now contain a new string field : category (can be
“bitcoin”, “channels”, “network”, “payment”, “plugins”, “utility”, “developer” for native commands, or any
other new category set by a plugin).

• Plugin: a plugin can now set the category of a newly created RPC command. This possibility has been added to
libplugin.c and pylightning.

• lightning-cli: the human readable help is now more human and more readable : commands are sorted alphabet-
ically and ordered by categories.

8.7.3 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

• JSON API: newaddr output field address: use bech32 or p2sh-segwit instead.

8.7.4 Removed

• JSON RPC: global_features and local_features fields and listchannels’ flags field. (Dep-
recated since 0.6.2).

• pylightning: Remove RPC support for c-lightning before 0.6.3.

8.7.5 Fixed

• Protocol: reconnection during closing negotiation now supports option_data_loss_protect properly.

• --bind-addr=<path> fixed for nodes using local sockets (eg. testing).

• Unannounced local channels were forgotten for routing on restart until reconnection occurred.

• lightning-cli: arguments containing " now succeed, rather than causing JSON errors.

• Protocol: handle lnd sending more messages before reestablish; don’t fail channel, and handle older lnd’s
spurious empty commitments.

• Fixed fundchannel crash when we have many UTXOs and we skip unconfirmed ones.

• lightningd: fixed occasional hang on connect when peer had sent error.

• JSON RPC: decodeinvoice and pay now handle unknown invoice fields properly.

• JSON API: waitsendpay (PAY_STOPPED_RETRYING) error handler now returns valid JSON

• protocol: don’t send multiple identical feerate changes if we want the feerate higher than we can afford.

• JSON API: stop now only returns once lightningd has released all resources.

70 Chapter 8. Changelog

c-lightning, Release v0.9.0-45-g723b722-modded

8.7.6 Security

• Fixes CVE-2019-12998 (Full Disclosure).

8.8 0.7.0 - 2019-02-28: “Actually an Altcoin”

This release was named by Mark Beckwith @wythe.

8.8.1 Added

• plugins: fully enabled, and ready for you to write some!

• plugins: pay is now a plugin.

• protocol: pay will now use routehints in invoices if it needs to.

• build: reproducible source zipfile and Ubuntu 18.04.1 build.

• JSON API: New command paystatus gives detailed information on pay commands.

• JSON API: getroute, invoice, sendpay and pay commands msatoshi parameter can have suffixes
msat, sat (optionally with 3 decimals) or btc (with 1 to 11 decimal places).

• JSON API: fundchannel and withdraw commands satoshi parameter can have suffixes msat (must
end in 000), sat or btc (with 1 to 8 decimal places).

• JSON API: decodepay, getroute, sendpay, pay, listpeers, listfunds, listchannels and
all invoice commands now return an amount_msat field which has an msat suffix.

• JSON API: listfunds channels now has _msat fields for each existing raw amount field, with msat
suffix.

• JSON API: waitsendpay now has an erring_direction field.

• JSON API: listpeers now has a direction field in channels.

• JSON API: listchannels now takes a source option to filter by node id.

• JSON API: getroute riskfactor argument is simplified; pay now defaults to setting it to 10.

• JSON API: sendpay now takes a bolt11 field, and it’s returned in listpayments and waitsendpay.

• JSON API: fundchannel and withdraw now have a new parameter minconf that limits coinselection to
outputs that have at least minconf confirmations (default 1). (#2380)

• JSON API: listfunds now displays addresses for all outputs owned by the wallet (#2387)

• JSON API: waitsendpay and sendpay output field label as specified by sendpay call.

• JSON API: listpays command for higher-level payment view than listpayments, especially important
with multi-part-payments coming.

• JSON API: listpayments is now listsendpays.

• lightning-cli: help <cmd> finds man pages even if make install not run.

• pylightning: New class ‘Millisatoshi’ can be used for JSON API, and new ‘_msat’ fields are turned into this on
reading.

8.8. 0.7.0 - 2019-02-28: “Actually an Altcoin” 71

https://lists.linuxfoundation.org/pipermail/lightning-dev/2019-September/002174.html

c-lightning, Release v0.9.0-45-g723b722-modded

8.8.2 Changed

• protocol: option_data_loss_protect is now enabled by default.

• JSON API: The short_channel_id separator has been changed to be x to match the specification.

• JSON API: listpeers now includes funding_allocation_msat, which returns a map of the amounts
initially funded to the channel by each peer, indexed by channel id.

• JSON API: help with a command argument gives a JSON array, like other commands.

• JSON API: sendpay description parameter is renamed label.

• JSON API: pay now takes an optional label parameter for labelling payments, in place of never-used
description.

• build: we’ll use the system libbase58 and libsodium if found suitable.

8.8.3 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

We recommend that you transition to the reading the new JSON _msat fields for your own sanity checking, and that
you similarly provide appropriate suffixes for JSON input fields.

• JSON API: short_channel_id fields in JSON commands with : separators (use x instead).

• JSON API: pay description is deprecated, as is support for BOLT11 strings using h.

• JSON API: sendpay parameter description and waitsendpay and sendpay output fields
description (now label).

• JSON API: listpayments has been deprecated (you probably want listpays)

8.8.4 Removed

• JSON API: the waitsendpay command error return no longer includes channel_update

8.8.5 Fixed

• Protocol: handling query_channel_range for large numbers of blocks (eg. 4 billion) was slow due to a
bug.

• Fixed occasional deadlock with peers when exchanging huge amounts of gossip.

• Fixed a crash when running in daemon-mode due to db filename overrun (#2348)

• Handle lnd sending premature ‘funding_locked’ message when we’re expected ‘reestablish’; we used to close
channel if this happened.

• Cleanup peers that started opening a channel, but then disconnected. These would leave a dangling entry in the
DB that would cause this peer to be unable to connect. (PR #2371)

• You can no longer make giant unpayable “wumbo” invoices.

• CLTV of total route now correctly evaluated when finding best route.

• riskfactor arguments to pay and getroute now have an effect.

72 Chapter 8. Changelog

c-lightning, Release v0.9.0-45-g723b722-modded

• Fixed the version of bip32 private_key to BIP32_VER_MAIN_PRIVATE: we used
BIP32_VER_MAIN_PRIVATE for bitcoin/litecoin mainnet, and BIP32_VER_TEST_PRIVATE for oth-
ers. (PR #2436)

8.8.6 Security

8.9 0.6.3 - 2019-01-09: “The Smallblock Conspiracy”

This release was named by @molxyz and @ctrlbreak.

8.9.1 Added

• JSON API: New command check checks the validity of a JSON API call without running it.

• JSON API: getinfo now returns num_peers num_pending_channels, num_active_channels
and num_inactive_channels fields.

• JSON API: use \n\n to terminate responses, for simplified parsing (pylightning now relies on this)

• JSON API: fundchannel now includes an announce option, when false it will keep channel private. De-
faults to true.

• JSON API: listpeers’s channels now includes a private flag to indicate if channel is announced or
not.

• JSON API: invoice route hints may now include private channels if you have no public ones, unless new
option exposeprivatechannels is false.

• Plugins: experimental plugin support for lightningd, including option passthrough and JSON-RPC
passthrough.

• Protocol: we now support features option_static_remotekey and gossip_queries_ex for peers.

8.9.2 Changed

• JSON API: pay and decodepay accept and ignore lightning: prefixes.

• pylightning: Allow either keyword arguments or positional arguments.

• JSON-RPC: messages are now separated by 2 consecutive newlines.

• JSON-RPC: jsonrpc:2.0 now included in json-rpc command calls. complies with spec.

8.9.3 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

• pylightning: Support for pre-2-newline JSON-RPC (<= 0.6.2 lightningd) is deprecated.

8.9.4 Removed

• option_data_loss_protect is now only offered if EXPERIMENTAL_FEATURES is enabled, since it seems in-
compatible with lnd and has known bugs.

8.9. 0.6.3 - 2019-01-09: “The Smallblock Conspiracy” 73

https://twitter.com/ctrlbreak

c-lightning, Release v0.9.0-45-g723b722-modded

8.9.5 Fixed

• JSON API: uppercase invoices now parsed correctly (broken in 0.6.2).

• JSON API: commands are once again read even if one hasn’t responded yet (broken in 0.6.2).

• Protocol: allow lnd to send update_fee before funding_locked.

• Protocol: fix limit on how much funder can send (fee was 1000x too small)

• Protocol: don’t send invalid onion errors if peer says onion was bad.

• Protocol: don’t crash when peer sends a 0-block-expiry HTLC.

• pylightning: handle multiple simultanous RPC replies reliably.

• build: we use --prefix as handed to ./configure

8.9.6 Security

8.10 0.6.2 - 2018-10-20: “The Consensus Loving Nasal Daemon”

This release was named by practicalswift.

8.10.1 Added

• JSON API: listpeers has new field scratch_txid: the latest tx in channel.

• JSON API: listpeers has new array htlcs: the current live payments.

• JSON API: listchannels has two new fields: message_flags and channel_flags. This replaces
flags.

• JSON API: invoice now adds route hint to invoices for incoming capacity (RouteBoost), and warns if insuf-
ficient capacity.

• JSON API: listforwards lists all forwarded payments, their associated channels, and fees.

• JSON API: getinfo shows forwarding fees earnt as msatoshi_fees_collected.

• Bitcoind: more parallelism in requests, for very slow nodes.

• Testing: fixed logging, cleaner interception of bitcoind, minor fixes.

• Protocol: we set and handle the new htlc_maximum_msat channel_update field.

8.10.2 Changed

• Protocol: channel_update sent to disable channel only if we reject an HTLC.

• Protocol: we don’t send redundant node_announcement on every new channel.

• Config: config file can override lightning-dir (makes sense with --conf).

• Config: --conf option is now relative to current directory, not lightning-dir.

• lightning-cli: help <cmd> prints basic information even if no man page found.

• JSON API: getinfo now reports global statistics about forwarded payments, including total fees earned and
amounts routed.

74 Chapter 8. Changelog

c-lightning, Release v0.9.0-45-g723b722-modded

8.10.3 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

• JSON RPC: listchannels’ flags field. This has been split into two fields, see Added.

• JSON RPC: global_features and local_features fields: use globalfeatures and
localfeatures as per BOLT #1.

8.10.4 Removed

• JSON API: the optional ‘seed’ parameter to getroute was removed.

8.10.5 Fixed

• Startup: more coherent complaint if daemon already running.

• Lightningd: correctly save full HTLCs across restarts; fixup old databases.

• JSON RPC: getinfo now shows correct Tor port.

• JSON RPC: ping now works even after one peer fails to respond.

• JSON RPC: getroute fuzzpercent and pay maxfeepercent can now be > 100.

• JSON RPC: riskfactor in pay and getroute no longer always treated as 1.

• JSON-RPC: listpeers was always reporting 0 for all stats.

• JSON RPC: withdraw all says Cannot afford transaction if you have absolutely no funds, rather
than Output 0 satoshis would be dust.

• Protocol: don’t send gossip about closed channels.

• Protocol: fix occasional deadlock when both peers flood with gossip.

• Protocol: fix occasional long delay on sending reply_short_channel_ids_end.

• Protocol: re-send node_announcement when address/alias/color etc change.

• Protocol: multiple HTLCs with the same payment_hash are handled correctly.

• Options: ‘autotor’ defaults to port 9051 if not specified.

8.10.6 Security

8.11 0.6.1 - 2018-09-11: “Principled Opposition To Segwit”

This release was named by ZmnSCPxj.

8.11.1 Added

• Protocol: gossipd now deliberately delays spamming with channel_update.

• Protocol: liveness ping when we commit changes but peer is idle: speeds up failures and reduces forced closures.

• Protocol: option_data_loss_protect now supported to protect peers against being out-of-date.

8.11. 0.6.1 - 2018-09-11: “Principled Opposition To Segwit” 75

c-lightning, Release v0.9.0-45-g723b722-modded

• JSON API: Added description to invoices and payments (#1740).

• JSON API: getinfo has new fields alias and color.

• JSON API: listpeers has new fields global_features and local_features.

• JSON API: listnodes has new field global_features.

• JSON API: ping command to send a ping to a connected peer.

• JSON API: feerates command to retrieve current fee estimates.

• JSON API: withdraw and fundchannel can be given manual feerate.

• Config: --conf option to set config file.

• Documentation: Added CHANGELOG.md

• pylightning: RpcError now has method and payload fields.

• Sending lightningd a SIGHUP will make it reopen its log-file, if any.

8.11.2 Changed

• Protocol: Fee estimates are now smoothed over time, to avoid sudden jumps.

• Config: You can only announce one address if each type (IPv4, IPv6, TORv2, TORv3).

• lightning-cli: the help command for a specific command now runs the man command.

• HSM: The HSM daemon now maintains the per-peer secrets, rather than handing them out. It’s still lax in what
it signs though.

• connectd: A new daemon lightning_connectd handles connecting to/from peers, instead of gossipd
doing that itself. lightning_openingd now handles peers immediately, even if they never actually open a
channel.

• Test: python-xdist is now a dependency for tests.

• Logging: JSON connections no longer spam debug logs.

• Routing: We no longer consider channels that are not usable either because of their capacity or their
htlc_minimum_msat parameter (#1777)

• We now try to connect to all known addresses for a peer, not just the one given or the first one announced.

• Crash logs are now placed one-per file like crash.log.20180822233752

• We will no longer allow withdrawing funds or funding channels if we do not have a fee estimate (eg. bitcoind
not synced); use new feerate arg.

8.11.3 Deprecated

8.11.4 Removed

• JSON API: listpeers results no long have alias and color fields; they’re in listnodes (we used to
internally merge the information).

• JSON API: listpeers will never have state field (it accidentally used to exist and set to GOSSIPING
before we opened a channel). connected will indicate if we’re connected, and the channels array indicates
individual channel states (if any).

• Config: default-fee-rate is no longer available; use explicit feerate option if necessary.

76 Chapter 8. Changelog

c-lightning, Release v0.9.0-45-g723b722-modded

• Removed all Deprecated options from 0.6.

8.11.5 Fixed

• Protocol: node_announcement multiple addresses are correctly ordered and uniquified.

• Protocol: if we can’t estimate feerate, be almost infinitely tolerant of other side setting fees to avoid unilateral
close.

• JSON API: listnodes: now displays node aliases and colors even if they don’t advertise a network address

• JSON API: fundchannel all: now restricts to 2^24-1 satoshis rather than failing.

• JSON API: listnodes: now correctly prints addresses if more than one is advertised.

• Config: bind-addr of a publicly accessible network address was announced.

• When we reconnect and have to retransmit failing HTLCs, the errors weren’t encrypted by us.

• lightningd_config man page is now installed by make install.

• Fixed crash when shutting down during opening a channel (#1737)

• Don’t lose track of our own output when applying penalty transaction (#1738)

• Protocol: channel_update inside error messages now refers to correct channel.

• Stripping type prefix from channel_updates that are nested in an onion reply to be compatible with eclair
and lnd (#1730).

• Failing tests no longer delete the test directory, to allow easier debugging (Issue: #1599)

8.11.6 Security

8.12 0.6 - 2018-06-22: “I Accidentally The Smart Contract”

In the prehistory of c-lightning, no changelog was kept. But major JSON API changes are tracked.

This release was named by Fabrice Drouin.

8.12.1 Deprecated

Note: You should always set allow-deprecated-apis=false to test for changes.

• Config: port. Use addr=:<portnum>.

• Config: ipaddr. Use addr.

• Config: anchor-confirms. Use funding-confirms.

• Config: locktime-blocks. Use watchtime-blocks.

• Protocol: on closing we allow out-of-range offers, prior to spec fix 2018-01-30 (“BOLT 2: order closing-signed
negotiation by making funder send first.” 90241d9cf60a598eac8fd839ac81e4093a161272)

• JSON API: listinvoice command. Use listinvoices.

• JSON API: invoice result fields paid_timestamp and expiry_time. Use paid_at and expires_at.

• JSON API: invoice command field fallback. Use fallbacks.

8.12. 0.6 - 2018-06-22: “I Accidentally The Smart Contract” 77

c-lightning, Release v0.9.0-45-g723b722-modded

• JSON API: decodepay result fields timestamp and fallback. Use created_at and fallbacks.

• JSON API: payment result fields timestamp. Use created_at.

• JSON API: getinfo result field port. Use binding and address arrays.

• JSON API: getlog result field creation_time. Use created_at.

• JSON API: getpeers result field channel_reserve_satoshis. Use
their_channel_reserve_satoshis.

• JSON API: getpeers result field to_self_delay. Use their_to_self_delay.

8.13 Older versions

There predate the BOLT specifications, and are only of vague historic interest:

1. 0.1 - 2015-08-08: “MtGox’s Cold Wallet” (named by Rusty Russell)

2. 0.2 - 2016-01-22: “Butterfly Labs’ Timely Delivery” (named by Anthony Towns)

3. 0.3 - 2016-05-25: “Nakamoto’s Genesis Coins” (named by Braydon Fuller)

4. 0.4 - 2016-08-19: “Wright’s Cryptographic Proof” (named by Christian Decker)

5. 0.5 - 2016-10-19: “Bitcoin Savings & Trust Daily Interest” (named by Glenn Willen)

6. 0.5.1 - 2016-10-21

7. 0.5.2 - 2016-11-21: “Bitcoin Savings & Trust Daily Interest II”

78 Chapter 8. Changelog

https://github.com/ElementsProject/lightning/releases/tag/v0.1-2015-08-08
https://github.com/ElementsProject/lightning/releases/tag/v0.2-2016-01-22
https://github.com/ElementsProject/lightning/releases/tag/v0.3-2016-05-26
https://github.com/ElementsProject/lightning/releases/tag/v0.4-2016-08-19
https://github.com/ElementsProject/lightning/releases/tag/v0.5-2016-10-19
https://github.com/ElementsProject/lightning/releases/tag/v0.5.1-2016-10-21
https://github.com/ElementsProject/lightning/releases/tag/v0.5.2-2016-11-21

CHAPTER 9

lightning-autocleaninvoice – Set up auto-delete of expired invoice

9.1 SYNOPSIS

autocleaninvoice [cycle_seconds] [expired_by]

9.2 DESCRIPTION

The autocleaninvoice RPC command sets up automatic cleaning of expired invoices.

Autoclean will be done every cycle_seconds seconds. Setting cycle_seconds to 0 disables autoclean. If not specified,
this defaults to 3600 (one hour).

Every autoclean cycle, expired invoices, which have already been expired for at least expired_by seconds, will be
deleted. If expired_by is not specified, this defaults to 86400 (one day).

On startup of the daemon, no autoclean is set up.

9.3 RETURN VALUE

On success, an empty object is returned.

9.4 AUTHOR

ZmnSCPxj <ZmnSCPxj@protonmail.com> is mainly responsible.

79

mailto:ZmnSCPxj@protonmail.com

c-lightning, Release v0.9.0-45-g723b722-modded

9.5 SEE ALSO

lightning-delexpiredinvoice(7), lightning-delinvoice(7)

9.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

80 Chapter 9. lightning-autocleaninvoice – Set up auto-delete of expired invoice

https://github.com/ElementsProject/lightning

CHAPTER 10

lightning-check – Command for verifying parameters

10.1 SYNOPSIS

check command_to_check [parameters]

10.2 DESCRIPTION

The check RPC command verifies another command’s parameters without running it.

The command_to_check is the name of the relevant command.

parameters is the command’s parameters.

This does not guarantee successful execution of the command in all cases. For example, a call to lightning-getroute(7)
may still fail to find a route even if checking the parameters succeeds.

10.3 RETURN VALUE

On success, the command_to_check is returned. On failure, the relevant RPC error is returned.

10.4 AUTHOR

Mark Beckwith <wythe@intrig.com> and Rusty Russell <rusty@rustcorp.com.au> are mainly responsible.

10.5 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

81

mailto:wythe@intrig.com
mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

c-lightning, Release v0.9.0-45-g723b722-modded

82 Chapter 10. lightning-check – Command for verifying parameters

CHAPTER 11

lightning-checkmessage – Command to check a signature is from a node

11.1 SYNOPSIS

checkmessage message zbase [pubkey]

11.2 DESCRIPTION

The checkmessage RPC command is the counterpart to signmessage: given a node id (pubkey), signature (zbase) and
a message, it verifies that the signature was generated by that node for that message (more technically: by someone
who knows that node’s secret).

As a special case, if pubkey is not specified, we will try every known node key (as per listnodes), and verification
succeeds if it matches for any one of them. Note: this is implemented far more efficiently than trying each one, so
performance is not a concern.

11.3 RETURN VALUE

On correct usage, an object with attribute verified will be returned.

If verified is true, the signature was generated by the returned pubkey for that given message. pubkey is the one
specified as input, or if none was specified, the known node which must have produced this signature.

If verified is false, the signature is meaningless. pubkey may also be returned, which is they pubkey (if any) for which
this signature would be valid. This is usually not useful.

11.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

83

mailto:rusty@rustcorp.com.au

c-lightning, Release v0.9.0-45-g723b722-modded

11.5 SEE ALSO

lightning-signmessage(7)

11.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

84 Chapter 11. lightning-checkmessage – Command to check a signature is from a node

https://github.com/ElementsProject/lightning

CHAPTER 12

lightning-cli – Control lightning daemon

12.1 SYNOPSIS

lightning-cli [OPTIONS] command. . .

12.2 DESCRIPTION

lightning-cli sends commands to the lightning daemon.

12.3 OPTIONS

–lightning-dir=DIR Set the directory for the lightning daemon we’re talking to; defaults to $HOME/.lightning.

–conf=PATH Sets configuration file (default: lightning-dir/config).

–network=network –mainnet –testnet –signet Sets network explicitly.

–rpc-file=FILE Named pipe to use to talk to lightning daemon: default is lightning-rpc in the lightning directory.

–keywords/-k Use format key=value for parameters in any order

–order/-o Follow strictly the order of parameters for the command

–json/-J Return result in JSON format (default unless help command, or result contains a format-hint field).

–raw/-R Return raw JSON directly as lightningd replies; this can be faster for large requests.

–human-readable/-H Return result in human-readable output.

–flat/-F Return JSON result in flattened one-per-line output, e.g. { "help": [{ "command": "check"
}] } would become help[0].command=check. This is useful for simple scripts which want to find a specific
output field without parsing JSON.

85

c-lightning, Release v0.9.0-45-g723b722-modded

–help/-h Pretty-print summary of options to standard output and exit. The format can be changed using -F, -R, -J, -H
etc.

–version/-V Print version number to standard output and exit.

allow-deprecated-apis=BOOL Enable deprecated options. It defaults to true, but you should set it to false when
testing to ensure that an upgrade won’t break your configuration.

12.4 COMMANDS

lightning-cli simply uses the JSON RPC interface to talk to lightningd, and prints the results. Thus the commands
available depend entirely on the lightning daemon itself.

12.5 ARGUMENTS

Arguments may be provided positionally or using key=value after the command name, based on either -o or -k op-
tion. Arguments may be integer numbers (composed entirely of digits), floating-point numbers (has a radix point but
otherwise composed of digits), true, false, or null. Other arguments are treated as strings.

Some commands have optional arguments. You may use null to skip optional arguments to provide later arguments.

12.6 EXAMPLES

Example 1. List commands

lightning-cli help

12.7 BUGS

This manpage documents how it should work, not how it does work. The pretty printing of results isn’t pretty.

12.8 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly to blame.

12.9 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

12.10 COPYING

Note: the modules in the ccan/ directory have their own licenses, but the rest of the code is covered by the BSD-style
MIT license.

86 Chapter 12. lightning-cli – Control lightning daemon

mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

CHAPTER 13

lightning-close – Command for closing channels with direct peers

13.1 SYNOPSIS

close id [unilateraltimeout] [destination] [fee_negotiation_step]

13.2 DESCRIPTION

The close RPC command attempts to close the channel cooperatively with the peer, or unilaterally after unilateral-
timeout, and the to-local output will be sent to the address specified in destination.

If the given id is a peer ID (66 hex digits as a string), then it applies to the active channel of the direct peer cor-
responding to the given peer ID. If the given id is a channel ID (64 hex digits as a string, or the short channel ID
blockheight:txindex:outindex form), then it applies to that channel.

If unilateraltimeout is not zero, the close command will unilaterally close the channel when that number of seconds
is reached. If unilateraltimeout is zero, then the close command will wait indefinitely until the peer is online and can
negotiate a mutual close. The default is 2 days (172800 seconds).

The destination can be of any Bitcoin accepted type, including bech32. If it isn’t specified, the default is a c-lightning
wallet address.

The fee_negotiation_step parameter controls how closing fee negotiation is performed assuming the peer proposes a
fee that is different than our estimate. On every negotiation step we must give up some amount from our proposal
towards the peer’s proposal. This parameter can be an integer in which case it is interpreted as number of satoshis to
step at a time. Or it can be an integer followed by “%” to designate a percentage of the interval to give up. A few
examples, assuming the peer proposes a closing fee of 3000 satoshi and our estimate shows it must be 4000:

• “10”: our next proposal will be 4000-10=3990.

• “10%”: our next proposal will be 4000-(10% of (4000-3000))=3900.

• “1”: our next proposal will be 3999. This is the most extreme case when we insist on our fee as much as
possible.

87

c-lightning, Release v0.9.0-45-g723b722-modded

• “100%”: our next proposal will be 3000. This is the most relaxed case when we quickly accept the peer’s
proposal. The default is “50%”.

The peer needs to be live and connected in order to negotiate a mutual close. The default of unilaterally closing after
48 hours is usually a reasonable indication that you can no longer contact the peer.

13.3 NOTES

Prior to 0.7.2, close took two parameters: force and timeout. timeout was the number of seconds before force took
effect (default, 30), and force determined whether the result was a unilateral close or an RPC error (default). Even
after the timeout, the channel would be closed if the peer reconnected.

13.4 RETURN VALUE

On success, an object with fields tx and txid containing the closing transaction are returned. It will also have a field type
which is either the JSON string mutual or the JSON string unilateral. A mutual close means that we could negotiate a
close with the peer, while a unilateral close means that the force flag was set and we had to close the channel without
waiting for the counterparty.

A unilateral close may still occur at any time if the peer did not behave correctly during the close negotiation.

Unilateral closes will return your funds after a delay. The delay will vary based on the peer to_self_delay setting, not
your own setting.

13.5 AUTHOR

ZmnSCPxj <ZmnSCPxj@protonmail.com> is mainly responsible.

13.6 SEE ALSO

lightning-disconnect(7), lightning-fundchannel(7)

13.7 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

88 Chapter 13. lightning-close – Command for closing channels with direct peers

mailto:ZmnSCPxj@protonmail.com
https://github.com/ElementsProject/lightning

CHAPTER 14

lightning-connect – Command for connecting to another lightning node

14.1 SYNOPSIS

connect id [host port]

14.2 DESCRIPTION

The connect RPC command establishes a new connection with another node in the Lightning Network.

id represents the target node’s public key. As a convenience, id may be of the form id@host or id@host:port. In this
case, the host and port parameters must be omitted.

host is the peer’s hostname or IP address.

If not specified, the port defaults to 9735.

If host is not specified, the connection will be attempted to an IP belonging to id obtained through gossip with other
already connected peers. This can fail if your C-lightning node is a fresh install that has not connected to any peers yet
(your node has no gossip yet), or if the target id is a fresh install that has no channels yet (nobody will gossip about a
node until it has one published channel).

If host begins with a / it is interpreted as a local path, and the connection will be made to that local socket (see
bind-addr in lightningd-config(5)).

Connecting to a node is just the first step in opening a channel with another node. Once the peer is connected a channel
can be opened with lightning-fundchannel(7).

14.3 RETURN VALUE

On success the peer id is returned, as well as a hexidecimal features bitmap.

89

c-lightning, Release v0.9.0-45-g723b722-modded

14.4 ERRORS

On failure, one of the following errors will be returned:

{ "code" : 400, "message" : "Unable to connect, no address known for peer" }

If some addresses are known but connecting to all of them failed, the message will contain details about the failures:

{ "code" : 401, "message" : "..." }

If the given parameters are wrong:

{ "code" : -32602, "message" : "..." }

14.5 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible. Felix <fixone@gmail.com> is the original author of
this manpage.

14.6 SEE ALSO

lightning-fundchannel(7), lightning-listpeers(7), lightning-listchannels(7), lightning-disconnect(7)

14.7 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

90 Chapter 14. lightning-connect – Command for connecting to another lightning node

mailto:rusty@rustcorp.com.au
mailto:fixone@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 15

lightning-createonion – Low-level command to create a custom onion

15.1 SYNOPSIS

createonion hops assocdata [session_key]

15.2 DESCRIPTION

The createonion RPC command allows the caller to create a custom onion with custom payloads at each hop in the
route. A custom onion can be used to implement protocol extensions that are not supported by c-lightning directly.

The hops parameter is a JSON list of dicts, each specifying a node and the payload destined for that node. The
following is an example of a 3 hop onion:

[
{

"pubkey":
→˓"022d223620a359a47ff7f7ac447c85c46c923da53389221a0054c11c1e3ca31d59",

"payload":
→˓"00000067000001000100000000000003e90000007b00
→˓"

}, {
"pubkey":

→˓"035d2b1192dfba134e10e540875d366ebc8bc353d5aa766b80c090b39c3a5d885d",
"payload":

→˓"00000067000003000100000000000003e80000007500
→˓"

}, {
"style": "legacy",
"pubkey":

→˓"0382ce59ebf18be7d84677c2e35f23294b9992ceca95491fcf8a56c6cb2d9de199",
"payload":

→˓"00000067000003000100000000000003e80000007500
→˓" (continues on next page)

91

c-lightning, Release v0.9.0-45-g723b722-modded

(continued from previous page)

}
]

The hops parameter is very similar to the result from getroute however it needs to be modified slightly. The
following is the getroute response from which the above hops parameter was generated:

[
{

"id":
→˓"022d223620a359a47ff7f7ac447c85c46c923da53389221a0054c11c1e3ca31d59",

"channel": "103x2x1",
"direction": 1,
"msatoshi": 1002,
"amount_msat": "1002msat",
"delay": 21,
"style": "legacy"

}, {
"id":

→˓"035d2b1192dfba134e10e540875d366ebc8bc353d5aa766b80c090b39c3a5d885d",
"channel": "103x1x1",
"direction": 0,
"msatoshi": 1001,
"amount_msat": "1001msat",
"delay": 15,
"style": "legacy"

}, {
"id":

→˓"0382ce59ebf18be7d84677c2e35f23294b9992ceca95491fcf8a56c6cb2d9de199",
"channel": "103x3x1",
"direction": 0,
"msatoshi": 1000,
"amount_msat": "1000msat",
"delay": 9,
"style": "legacy"

}
]

• Notice that the payload in the hops parameter is the hex-encoded version of the parameters in the getroute
response.

• The payloads are shifted left by one, i.e., payload 0 in createonion corresponds to payload 1 from
getroute.

• The final payload is a copy of the last payload sans channel

These rules are directly derived from the onion construction. Please refer BOLT 04 for details and rationale.

The assocdata parameter specifies the associated data that the onion should commit to. If the onion is to be used to
send a payment later it MUST match the payment_hash of the payment in order to be valid.

The optional session_key parameter can be used to specify a secret that is used to generate the shared secrets used to
encrypt the onion for each hop. It should only be used for testing or if a specific shared secret is important. If not
specified it will be securely generated internally, and the shared secrets will be returned.

92 Chapter 15. lightning-createonion – Low-level command to create a custom onion

https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing

c-lightning, Release v0.9.0-45-g723b722-modded

15.3 RETURN VALUE

On success, an object containing the onion and the shared secrets will be returned. Otherwise an error will be reported.
The following example is the result of calling createonion with the above hops parameter:

{
"onion": "0003f3f80d2142b953319336d2fe4097[......

→˓]6af33fcf4fb113bce01f56dd62248a9e5fcbbfba35c",
"shared_secrets": [

"88ce98c73e4d9293ab1797b0a913fe9bca0213a566252047d01b8af6da871f3e",
"4474d296810e57bd460ef8b83d2e7d288321f8a99ff7686f87384699747bcfc4",
"2a862e4123e01799a732be487fbce297f7dc7cc1467e410f18369cfee476adc2"

]
}

The onion corresponds to 1366 hex-encoded bytes. Each shared secret consists of 32 hex-encoded bytes. Both
arguments can be passed on to sendonion.

15.4 AUTHOR

Christian Decker <decker.christian@gmail.com> is mainly responsible.

15.5 SEE ALSO

lightning-sendonion(7), lightning-getroute(7)

15.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

15.3. RETURN VALUE 93

mailto:decker.christian@gmail.com
https://github.com/ElementsProject/lightning

c-lightning, Release v0.9.0-45-g723b722-modded

94 Chapter 15. lightning-createonion – Low-level command to create a custom onion

CHAPTER 16

lightning-decodepay – Command for decoding a bolt11 string (low-level)

16.1 SYNOPSIS

decodepay bolt11 [description]

16.2 DESCRIPTION

The decodepay RPC command checks and parses a bolt11 string as specified by the BOLT 11 specification.

16.3 RETURN VALUE

On success, an object is returned with the following fields, as specified by BOLT11:

• currency: the BIP173 name for the currency.

• timestamp: the UNIX-style timestamp of the invoice.

• expiry: the number of seconds this is valid after timestamp.

• payee: the public key of the recipient.

• payment_hash: the payment hash of the request.

• signature: the DER-encoded signature.

• description: the description of the purpose of the purchase (see below)

The following fields are optional:

• msatoshi: the number of millisatoshi requested (if any).

• amount_msat: the same as above, with msat appended (if any).

95

c-lightning, Release v0.9.0-45-g723b722-modded

• fallbacks: array of fallback address object containing a hex string, and both type and addr if it is recognized as
one of P2PKH, P2SH, P2WPKH, or P2WSH.

• routes: an array of routes. Each route is an arrays of objects, each containing pubkey, short_channel_id,
fee_base_msat, fee_proportional_millionths and cltv_expiry_delta.

• extra: an array of objects representing unknown fields, each with one-character tag and a data bech32 string.

Technically, the description field is optional if a description_hash field is given, but in this case decodepay will only
succeed if the optional description field is passed and matches the description_hash. In practice, these are currently
unused.

16.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

16.5 SEE ALSO

lightning-pay(7), lightning-getroute(7), lightning-sendpay(7).

BOLT #11.

16.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

96 Chapter 16. lightning-decodepay – Command for decoding a bolt11 string (low-level)

mailto:rusty@rustcorp.com.au
https://github.com/lightningnetwork/lightning-rfc/blob/master/11-payment-encoding
https://github.com/ElementsProject/lightning

CHAPTER 17

lightning-delexpiredinvoice – Command for removing expired invoices

17.1 SYNOPSIS

delexpiredinvoice [maxexpirytime]

17.2 DESCRIPTION

The delexpiredinvoice RPC command removes all invoices that have expired on or before the given maxexpirytime.

If maxexpirytime is not specified then all expired invoices are deleted.

17.3 RETURN VALUE

On success, an empty object is returned.

17.4 AUTHOR

ZmnSCPxj <ZmnSCPxj@protonmail.com> is mainly responsible.

17.5 SEE ALSO

lightning-delinvoice(7), lightning-autocleaninvoice(7)

97

mailto:ZmnSCPxj@protonmail.com

c-lightning, Release v0.9.0-45-g723b722-modded

17.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

98 Chapter 17. lightning-delexpiredinvoice – Command for removing expired invoices

https://github.com/ElementsProject/lightning

CHAPTER 18

lightning-delinvoice – Command for removing an invoice

18.1 SYNOPSIS

delinvoice label status

18.2 DESCRIPTION

The delinvoice RPC command removes an invoice with status as given in listinvoices.

The caller should be particularly aware of the error case caused by the status changing just before this command is
invoked!

18.3 RETURN VALUE

On success, an invoice description will be returned as per lightning-listinvoice(7).

18.4 ERRORS

The following errors may be reported:

• -1: Database error.

• 905: An invoice with that label does not exist.

• 906: The invoice status does not match the parameter. An error object will be returned as error data, containing
current_status and expected_status fields. This is most likely due to the status of the invoice changing just
before this command is invoked.

99

c-lightning, Release v0.9.0-45-g723b722-modded

18.5 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

18.6 SEE ALSO

lightning-listinvoice(7), lightning-waitinvoice(7), lightning-invoice(7), lightning-delexpiredinvoice(7), lightning-
autocleaninvoice(7)

18.7 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

100 Chapter 18. lightning-delinvoice – Command for removing an invoice

mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

CHAPTER 19

lightning-dev-sendcustommsg – Low-level interface to send protocol
messages to peers

19.1 SYNOPSIS

dev-sendcustommsg node_id msg

19.2 DESCRIPTION

The dev-sendcustommsg RPC method allows the user to inject a custom message into the communication with
the peer with the given node_id. This is intended as a low-level interface to implement custom protocol extensions
on top, not for direct use by end-users.

The message must be a hex encoded well-formed message, including the 2-byte type prefix, but excluding the length
prefix which will be added by the RPC method. The messages must not use even-numbered types, since these may
require synchronous handling on the receiving side, and can cause the connection to be dropped. The message types
may also not use one of the internally handled types, since that may cause issues with the internal state tracking of
c-lightning.

The node specified by node_id must be a peer, i.e., it must have a direct connection with the node receiving the RPC
call, and the connection must be established. For a method to send arbitrary messages over multiple hops, including
hops that do not understand the custom message, see the createonion and sendonion RPC methods. Messages
can only be injected if the connection is handled by openingd or channeld. Messages cannot be injected when
the peer is handled by onchaind or closingd since these do not have a connection, or are synchronous daemons
that do not handle spontaneous messages.

On the reveiving end a plugin may implement the custommsg plugin hook and get notified about incoming messages.

101

c-lightning, Release v0.9.0-45-g723b722-modded

19.3 RETURN VALUE

The method will validate the arguments and queue the message for delivery through the daemon that is currently han-
dling the connection. Queuing provides best effort guarantees and the message may not be delivered if the connection
is terminated while the message is queued. The RPC method will return as soon as the message is queued.

If any of the above limitations is not respected the method returns an explicit error message stating the issue.

19.4 AUTHOR

Christian Decker <decker.christian@gmail.com> is mainly responsible.

19.5 SEE ALSO

lightning-createonion(7), lightning-sendonion(7)

19.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

102 Chapter 19. lightning-dev-sendcustommsg – Low-level interface to send protocol messages to
peers

mailto:decker.christian@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 20

lightning-disconnect – Command for disconnecting from another lightning
node

20.1 SYNOPSIS

disconnect id [force]

20.2 DESCRIPTION

The disconnect RPC command closes an existing connection to a peer, identified by id, in the Lightning Network, as
long as it doesn’t have an active channel. If force is set then it will disconnect even with an active channel.

The id can be discovered in the output of the listpeers command, which returns a set of peers:

{
"peers": [

{
"id": "0563aea81...",
"connected": true,
...

}
]

}

Passing the id attribute of a peer to disconnect will terminate the connection.

20.3 RETURN VALUE

On success, an empty object is returned.

On error the returned object will contain code and message properties, with code being one of the following:

103

c-lightning, Release v0.9.0-45-g723b722-modded

• -32602: If the given parameters are wrong.

• -1: Catchall nonspecific error.

20.4 AUTHOR

Michael Hawkins <michael.hawkins@protonmail.com>.

20.5 SEE ALSO

lightning-connect(1), lightning-listpeers(1)

20.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

104 Chapter 20. lightning-disconnect – Command for disconnecting from another lightning node

mailto:michael.hawkins@protonmail.com
https://github.com/ElementsProject/lightning

CHAPTER 21

lightning-feerates – Command for querying recommended onchain
feerates

21.1 SYNOPSIS

feerates style

21.2 DESCRIPTION

The feerates command returns the feerates that C-lightning will use. The feerates will be based on the recommended
feerates from the backend. The backend may fail to provide estimates, but if it was able to provide estimates in the
past, C-lightning will continue to use those for a while. C-lightning will also smoothen feerate estimations from the
backend.

style is either of the two strings:

• perkw - provide feerate in units of satoshis per 1000 weight.

• perkb - provide feerate in units of satoshis per 1000 virtual bytes.

Bitcoin transactions have non-witness and witness bytes:

• Non-witness bytes count as 4 weight, 1 virtual byte. All bytes other than SegWit witness count as non-witness
bytes.

• Witness bytes count as 1 weight, 0.25 virtual bytes.

Thus, all perkb feerates will be exactly 4 times perkw feerates.

To compute the fee for a transaction, multiply its weight or virtual bytes by the appropriate perkw or perkw feerate
returned by this command, then divide by 1000.

There is currently no way to change these feerates from the RPC. If you need custom control over onchain feerates,
you will need to provide your own plugin that replaces the bcli plugin backend. For commands like lightning-
withdraw(7) or lightning-fundchannel(7) you can provide a preferred feerate directly as a parameter, which will over-
ride the recommended feerates returned by feerates.

105

c-lightning, Release v0.9.0-45-g723b722-modded

21.3 RETURN VALUE

The feerates command returns the feerates in an object named perkw or perkb, depending on your style parameter.

Some of these estimations may be missing, except for min_acceptable and max_acceptable, which are always present.

The perkw or perkb object may have fields containing the estimates:

• opening - feerate used for channel opening by lightning-fundchannel(7), as well as normal onchain-to-onchain
spends by lightning-withdraw(7). In general, for all normal onchain-to-onchain spends, this is the feerate you
should also use.

• mutual_close - the starting feerate used in mutual close negotiation. Note that since mutual close is a negotia-
tion, the actual feerate used in mutual close will be somewhere between this and the corresponding mutual close
feerate of the peer.

• unilateral_close - the feerate we will pay for when a unilateral close is done on a channel we originally funded.
When anchor commitments are implemented, this will be the feerate we will use for a unilateral close we
initiated.

• delayed_to_us - the feerate we will use when claiming our output from a unilateral close we initiated.

• htlc_resolution - the feerate we will use to claim HTLCs from a unilateral close we initiated.

• penalty - the feerate we will use to revoke old state, if the counterparty attempts to cheat us.

The following fields are always present in the perkw or perkb object:

• min_acceptable - the smallest feerate that you can use, usually the minimum relayed feerate of the backend.

• max_acceptable - the largest feerate we will accept from remote negotiations. If a peer attempts to open a
channel to us but wants a unilateral close feerate larger than max_acceptable, we reject the open attempt. If
the peer attempts to change the unilateral close feerate of a channel it opened to us, such that the new feerate
exceeds max_acceptable, we unilaterally close the channel (at the current unilateral close feerate instead of the
new one).

21.4 ERRORS

The feerates command will never error, however some fields may be missing in the result if feerate estimates for that
kind of transaction are unavailable.

21.5 NOTES

Many other commands have a feerate parameter, which can be the strings urgent, normal, or slow. These are mapped
to the feerates outputs as:

• urgent - equal to unilateral_close

• normal - equal to opening

• slow - equal to min_acceptable.

106 Chapter 21. lightning-feerates – Command for querying recommended onchain feerates

c-lightning, Release v0.9.0-45-g723b722-modded

21.6 TRIVIA

In C-lightning we like to call the weight unit “sipa” in honor of Pieter Wuille, who uses the name “sipa” on IRC and
elsewhere. Internally we call the perkw style as “feerate per kilosipa”.

21.7 AUTHOR

ZmnSCPxj < ZmnSCPxj@protonmail.com > wrote the initial version of this manpage.

21.8 SEE ALSO

lightning-fundchannel(7), lightning-withdraw(7), lightning-txprepare(7), lightning-fundchannel_start(7).

21.9 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

21.6. TRIVIA 107

mailto:ZmnSCPxj@protonmail.com
https://github.com/ElementsProject/lightning

c-lightning, Release v0.9.0-45-g723b722-modded

108 Chapter 21. lightning-feerates – Command for querying recommended onchain feerates

CHAPTER 22

lightning-fundchannel – Command for establishing a lightning channel

22.1 SYNOPSIS

fundchannel id amount [feerate announce] [minconf] [utxos] [push_msat]

22.2 DESCRIPTION

The fundchannel RPC command opens a payment channel with a peer by committing a funding transaction to the
blockchain as defined in BOLT #2. If not already connected, fundchannel will automatically attempt to connect if
C-lightning knows a way to contact the node (either from normal gossip, or from a previous connect call). This auto-
connection can fail if C-lightning does not know how to contact the target node; see lightning-connect(7). Once the
transaction is confirmed, normal channel operations may begin. Readiness is indicated by listpeers reporting a state
of CHANNELD_NORMAL for the channel.

id is the peer id obtained from connect.

amount is the amount in satoshis taken from the internal wallet to fund the channel. The string all can be used to
specify all available funds (or 16777215 satoshi if more is available and large channels were not negotiated with the
peer). Otherwise, it is in satoshi precision; it can be a whole number, a whole number ending in sat, a whole number
ending in 000msat, or a number with 1 to 8 decimal places ending in btc. The value cannot be less than the dust limit,
currently set to 546, nor more than 16777215 satoshi (unless large channels were negotiated with the peer).

feerate is an optional feerate used for the opening transaction and as initial feerate for commitment and HTLC trans-
actions. It can be one of the strings urgent (aim for next block), normal (next 4 blocks or so) or slow (next 100 blocks
or so) to use lightningd’s internal estimates: normal is the default.

Otherwise, feerate is a number, with an optional suffix: perkw means the number is interpreted as satoshi-per-kilosipa
(weight), and perkb means it is interpreted bitcoind-style as satoshi-per-kilobyte. Omitting the suffix is equivalent to
perkb.

announce is an optional flag that triggers whether to announce this channel or not. Defaults to true. An unannounced
channel is considered private.

minconf specifies the minimum number of confirmations that used outputs should have. Default is 1.

109

c-lightning, Release v0.9.0-45-g723b722-modded

utxos specifies the utxos to be used to fund the channel, as an array of “txid:vout”.

push_msat is the amount of millisatoshis to push to the channel peer at open. Note that this is a gift to the peer – these
satoshis are added to the initial balance of the peer at channel start and are largely unrecoverable once pushed.

22.3 RETURN VALUE

On success, the tx and txid of the transaction is returned, as well as the channel_id of the newly created channel. On
failure, an error is reported and the channel is not funded.

The following error codes may occur:

• -1: Catchall nonspecific error.

• 300: The maximum allowed funding amount is exceeded.

• 301: There are not enough funds in the internal wallet (including fees) to create the transaction.

• 302: The output amount is too small, and would be considered dust.

• 303: Broadcasting of the funding transaction failed, the internal call to bitcoin-cli returned with an error.

Failure may also occur if lightningd and the peer cannot agree on channel parameters (funding limits, channel reserves,
fees, etc.).

22.4 SEE ALSO

lightning-connect(7), lightning-listfunds(), lightning-listpeers(7), lightning-feerates(7)

22.5 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

110 Chapter 22. lightning-fundchannel – Command for establishing a lightning channel

https://github.com/ElementsProject/lightning

CHAPTER 23

lightning-fundchannel_cancel – Command for completing channel
establishment

23.1 SYNOPSIS

fundchannel_cancel id

23.2 DESCRIPTION

fundchannel_cancel is a lower level RPC command. It allows channel opener to cancel a channel before funding
broadcast with a connected peer.

id is the node id of the remote peer with which to cancel.

Note that the funding transaction MUST NOT be broadcast before fundchannel_cancel. Broadcasting transac-
tion before fundchannel_cancel WILL lead to unrecoverable loss of funds.

If fundchannel_cancel is called after fundchannel_complete, the remote peer may disconnect when com-
mand succeeds. In this case, user need to connect to remote peer again before opening channel.

23.3 RETURN VALUE

On success, returns confirmation that the channel establishment has been canceled.

On error the returned object will contain code and message properties, with code being one of the following:

• -32602: If the given parameters are wrong.

• 306: Unknown peer id.

• 307: No channel currently being funded that can be cancelled.

111

c-lightning, Release v0.9.0-45-g723b722-modded

• 308: It is unsafe to cancel the channel: the funding transaction has been broadcast, or there are HTLCs already
in the channel, or the peer was the initiator and not us.

23.4 AUTHOR

Lisa Neigut <niftynei@gmail.com> is mainly responsible.

23.5 SEE ALSO

lightning-connect(7), lightning-fundchannel(7), lightning-fundchannel_start(7), lightning-fundchannel_complete(7)

23.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

112 Chapter 23. lightning-fundchannel_cancel – Command for completing channel establishment

mailto:niftynei@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 24

lightning-fundchannel_complete – Command for completing channel
establishment

24.1 SYNOPSIS

fundchannel_complete id txid txout

24.2 DESCRIPTION

fundchannel_complete is a lower level RPC command. It allows a user to complete an initiated channel estab-
lishment with a connected peer.

id is the node id of the remote peer.

txid is the hex string of the funding transaction id.

txout is the integer outpoint of the funding output for this channel.

Note that the funding transaction MUST NOT be broadcast until after channel establishment has been successfully
completed, as the commitment transactions for this channel are not secured until this command successfully completes.
Broadcasting transaction before can lead to unrecoverable loss of funds.

24.3 RETURN VALUE

On success, returns a confirmation that commitments_secured and the derived channel_id.

On error the returned object will contain code and message properties, with code being one of the following:

• -32602: If the given parameters are wrong.

• -1: Catchall nonspecific error.

• 305: Peer is not connected.

113

c-lightning, Release v0.9.0-45-g723b722-modded

• 306: Unknown peer id.

24.4 AUTHOR

Lisa Neigut <niftynei@gmail.com> is mainly responsible.

24.5 SEE ALSO

lightning-connect(7), lightning-fundchannel(7), lightning-fundchannel_start(7), lightning-fundchannel_cancel(7)

24.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

114Chapter 24. lightning-fundchannel_complete – Command for completing channel establishment

mailto:niftynei@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 25

lightning-fundchannel_start – Command for initiating channel
establishment for a lightning channel

25.1 SYNOPSIS

fundchannel_start id amount [feerate announce close_to push_msat]

25.2 DESCRIPTION

fundchannel_start is a lower level RPC command. It allows a user to initiate channel establishment with a
connected peer.

id is the node id of the remote peer.

amount is the satoshi value that the channel will be funded at. This value MUST be accurate, otherwise the negotiated
commitment transactions will not encompass the correct channel value.

feerate is an optional field. Sets the feerate for subsequent commitment transactions: see fundchannel.

announce whether or not to announce this channel.

close_to is a Bitcoin address to which the channel funds should be sent to on close. Only valid if both peers have
negotiated option_upfront_shutdown_script. Returns close_to set to closing script iff is negotiated.

push_msat is the amount of millisatoshis to push to the channel peer at open. Note that this is a gift to the peer – these
satoshis are added to the initial balance of the peer at channel start and are largely unrecoverable once pushed.

Note that the funding transaction MUST NOT be broadcast until after channel establishment has been successfully
completed by running fundchannel_complete, as the commitment transactions for this channel are not secured
until the complete command succeeds. Broadcasting transaction before that can lead to unrecoverable loss of funds.

115

c-lightning, Release v0.9.0-45-g723b722-modded

25.3 RETURN VALUE

On success, returns the funding_address and the scriptpubkey for the channel funding output. If a close_to address
was provided, will close to this address iff the close_to address is returned in the response. Otherwise, the peer
does not support option_upfront_shutdownscript.

On error the returned object will contain code and message properties, with code being one of the following:

• -32602: If the given parameters are wrong.

• -1: Catchall nonspecific error.

• 300: The amount exceeded the maximum configured funding amount.

• 301: The provided push_msat is greater than the provided amount.

• 304: Still syncing with bitcoin network

• 305: Peer is not connected.

• 306: Unknown peer id.

25.4 AUTHOR

Lisa Neigut <niftynei@gmail.com> is mainly responsible.

25.5 SEE ALSO

lightning-connect(7), lightning-fundchannel(7), lightning-fundchannel_complete(7), lightning-fundchannel_cancel(7)

25.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

116 Chapter 25. lightning-fundchannel_start – Command for initiating channel establishment for a
lightning channel

mailto:niftynei@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 26

lightning-fundpsbt – Command to populate PSBT inputs from the wallet

26.1 SYNOPSIS

fundpsbt satoshi feerate startweight [minconf] [reserve]

26.2 DESCRIPTION

fundpsbt is a low-level RPC command which creates a PSBT using unreserved inputs in the wallet, optionally
reserving them as well.

satoshi is the minimum satoshi value of the output(s) needed (or the string “all” meaning use all unreserved inputs).
If a value, it can be a whole number, a whole number ending in sat, a whole number ending in 000msat, or a number
with 1 to 8 decimal places ending in btc.

feerate can be one of the feerates listed in lightning-feerates(7), or one of the strings urgent (aim for next block),
normal (next 4 blocks or so) or slow (next 100 blocks or so) to use lightningd’s internal estimates. It can also be a
feerate is a number, with an optional suffix: perkw means the number is interpreted as satoshi-per-kilosipa (weight),
and perkb means it is interpreted bitcoind-style as satoshi-per-kilobyte. Omitting the suffix is equivalent to perkb.

startweight is the weight of the transaction before fundpsbt has added any inputs.

minconf specifies the minimum number of confirmations that used outputs should have. Default is 1.

reserve is a boolean: if true (the default), then reserveinputs is called (successfully, with exclusive true) on the returned
PSBT.

26.3 EXAMPLE USAGE

Let’s assume the caller is trying to produce a 100,000 satoshi output.

First, the caller estimates the weight of the core (typically 42) and known outputs of the transaction (typically (9 +
scriptlen) * 4). For a simple P2WPKH it’s a 22 byte scriptpubkey, so that’s 164 weight.

117

c-lightning, Release v0.9.0-45-g723b722-modded

It calls “fundpsbt 100000sat slow 206”, which succeeds, and returns the psbt and feerate_per_kw it used, the esti-
mated_final_weight and any excess_msat.

If excess_msat is greater than the cost of adding a change output, the caller adds a change output randomly to position
0 or 1 in the PSBT. Say feerate_per_kw is 253, and the change output is a P2WPKH (weight 164), that would cost the
cost is around 41 sats. With the dust limit disallowing payments below 546 satoshis, we would only create a change
output if excess_msat was greater or equal to 41 + 546.

26.4 RETURN VALUE

On success, returns the psbt containing the inputs, feerate_per_kw showing the exact numeric feerate it used, es-
timated_final_weight for the estimated weight of the transaction once fully signed, and excess_msat containing the
amount above satoshi which is available. This could be zero, or dust. If satoshi was “all”, then excess_msat is the
entire amount once fees are subtracted for the weights of the inputs and startweight.

If reserve was true, then a reservations array is returned, exactly like reserveinputs.

On error the returned object will contain code and message properties, with code being one of the following:

• -32602: If the given parameters are wrong.

• -1: Catchall nonspecific error.

• 301: Insufficient UTXOs to meet satoshi value.

26.5 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

26.6 SEE ALSO

lightning-reserveinputs(7), lightning-unreserveinputs(7).

26.7 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

118 Chapter 26. lightning-fundpsbt – Command to populate PSBT inputs from the wallet

mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

CHAPTER 27

lightning-getroute – Command for routing a payment (low-level)

27.1 SYNOPSIS

getroute id msatoshi riskfactor [cltv] [fromid] [fuzzpercent] [exclude] [maxhops]

27.2 DESCRIPTION

The getroute RPC command attempts to find the best route for the payment of msatoshi to lightning node id, such that
the payment will arrive at id with cltv-blocks to spare (default 9).

msatoshi is in millisatoshi precision; it can be a whole number, or a whole number ending in msat or sat, or a number
with three decimal places ending in sat, or a number with 1 to 11 decimal places ending in btc.

There are two considerations for how good a route is: how low the fees are, and how long your payment will get stuck
in a delayed output if a node goes down during the process. The riskfactor non-negative floating-point field controls
this tradeoff; it is the annual cost of your funds being stuck (as a percentage).

For example, if you thought the convenience of keeping your funds liquid (not stuck) was worth 20% per annum
interest, riskfactor would be 20.

If you didn’t care about risk, riskfactor would be zero.

fromid is the node to start the route from: default is this node.

The fuzzpercent is a non-negative floating-point number, representing a percentage of the actual fee. The fuzzpercent
is used to distort computed fees along each channel, to provide some randomization to the route generated. 0.0 means
the exact fee of that channel is used, while 100.0 means the fee used might be from 0 to twice the actual fee. The
default is 5.0, or up to 5% fee distortion.

exclude is a JSON array of short-channel-id/direction (e.g. [“564334x877x1/0”, “564195x1292x0/1”]) or node-id
which should be excluded from consideration for routing. The default is not to exclude any channels or nodes. Note if
the source or destination is excluded, the command result is undefined.

maxhops is the maximum number of channels to return; default is 20.

119

c-lightning, Release v0.9.0-45-g723b722-modded

27.3 RISKFACTOR EFFECT ON ROUTING

The risk factor is treated as if it were an additional fee on the route, for the purposes of comparing routes.

The formula used is the following approximation:

risk-fee = amount x blocks-timeout x per-block-cost

We are given a riskfactor expressed as a percentage. There are 52596 blocks per year, thus per-block-cost is riskfactor
divided by 5,259,600.

The final result is:

risk-fee = amount x blocks-timeout x riskfactor / 5259600

Here are the risk fees in millisatoshis, using various parameters. I assume a channel charges the default of 1000
millisatoshis plus 1 part-per-million. Common to_self_delay values on the network at 14 and 144 blocks.

27.4 RECOMMENDED RISKFACTOR VALUES

The default fuzz factor is 5%, so as you can see from the table above, that tends to overwhelm the effect of riskfactor
less than about 5.

1 is a conservative value for a stable lightning network with very few failures.

1000 is an aggressive value for trying to minimize timeouts at all costs.

The default for lightning-pay(7) is 10, which starts to become a major factor for larger amounts, and is basically
ignored for tiny ones.

27.5 RETURN VALUE

On success, a “route” array is returned. Each array element contains id (the node being routed through), msatoshi
(the millisatoshis sent), amount_msat (the same, with msat appended), delay (the number of blocks to timeout at this
node), and style (indicating the features which can be used for this hop).

The final id will be the destination id given in the input. The difference between the first msatoshi minus the msatoshi
given in the input is the fee. The first delay is the very worst case timeout for the payment failure, in blocks.

27.6 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

27.7 SEE ALSO

lightning-pay(7), lightning-sendpay(7).

120 Chapter 27. lightning-getroute – Command for routing a payment (low-level)

mailto:rusty@rustcorp.com.au

c-lightning, Release v0.9.0-45-g723b722-modded

27.8 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

27.8. RESOURCES 121

https://github.com/ElementsProject/lightning

c-lightning, Release v0.9.0-45-g723b722-modded

122 Chapter 27. lightning-getroute – Command for routing a payment (low-level)

CHAPTER 28

lightning-getsharedsecret – Command for computing an ECDH

28.1 SYNOPSIS

getsharedsecret point

28.2 DESCRIPTION

The getsharedsecret RPC command computes a shared secret from a given public point, and the secret key of this
node. The point is a hexadecimal string of the compressed public key DER-encoding of the SECP256K1 point.

28.3 RETURN VALUE

On success, getsharedsecret returns a field shared_secret, which is a hexadecimal string of the 256-bit SHA-2 of the
compressed public key DER-encoding of the SECP256K1 point that is the shared secret generated using the Elliptic
Curve Diffie-Hellman algorithm. This field is 32 bytes (64 hexadecimal characters in a string).

This command may fail if communications with the HSM has a problem; by default lightningd uses a software “HSM”
which should never fail in this way. (As of the time of this writing there is no true hardware HSM that lightningd can
use, but we are leaving this possibilty open in the future.) In that case, it will return with an error code of 800.

28.4 CRYPTOGRAPHIC STANDARDS

This serves as a key agreement scheme in elliptic-curve based cryptographic standards.

However, note that most key agreement schemes based on Elliptic-Curve Diffie-Hellman do not hash the DER-
compressed point. Standards like SECG SEC-1 ECIES specify using the X coordinate of the point instead. The
Lightning BOLT standard (which lightningd uses), unlike most other cryptographic standards, specifies the SHA-
256 hash of the DER-compressed encoding of the point.

123

c-lightning, Release v0.9.0-45-g723b722-modded

It is not possible to extract the X coordinate of the ECDH point via this API, since there is no known way to reverse
the 256-bit SHA-2 hash function. Thus there is no way to implement ECIES and similar standards using this API.

If you know the secret key behind point, you do not need to even call getsharedsecret, you can just multiply the secret
key with the node public key.

Typically, a sender will generate an ephemeral secret key and multiply it with the node public key, then use the result
to derive an encryption key for a symmetric encryption scheme to encrypt a message that can be read only by that
node. Then the ephemeral secret key is multiplied by the standard generator point, and the ephemeral public key and
the encrypted message is sent to the node, which then uses getsharedsecret to derive the same key.

The above sketch elides important details like key derivation function, stream encryption scheme, message authenti-
cation code, and so on. You should follow an established standard and avoid rolling your own crypto.

28.5 AUTHOR

ZmnSCPxj <ZmnSCPxj@protonmail.com> is mainly responsible.

28.6 SEE ALSO

28.7 RESOURCES

• BOLT 4: https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#shared-secret

• BOLT 8: https://github.com/lightningnetwork/lightning-rfc/blob/master/08-transport.md#handshake-state

• SECG SEC-1 ECIES: https://secg.org/sec1-v2.pdf

• Main web site: https://github.com/ElementsProject/lightning

124 Chapter 28. lightning-getsharedsecret – Command for computing an ECDH

mailto:ZmnSCPxj@protonmail.com
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#shared-secret
https://github.com/lightningnetwork/lightning-rfc/blob/master/08-transport.md#handshake-state
https://secg.org/sec1-v2.pdf
https://github.com/ElementsProject/lightning

CHAPTER 29

lightning-hsmtool – Tool for working with software HSM secrets of
lightningd

29.1 SYNOPSIS

lightning-hsmtool method [ARGUMENTS]...

29.2 DESCRIPTION

lightning-hsmtool performs various operations on the hsm_secret file used by the software HSM component of
lightningd.

This can be used to encrypt and decrypt the hsm_secret file, as well as derive secrets used in channel commitments.

29.3 METHODS

encrypt hsm_secret password Encrypt the hsm_secret file so that it can only be decrypted at lightningd startup.
You must give the option –encrypted-hsm to lightningd. The password of the hsm_secret file will be asked
whenever you start lightningd.

decrypt hsm_secret password Decrypt the hsm_secret file that was encrypted with the encrypt method.

dumpcommitments node_id channel_dbid depth hsm_secret [password] Show the per-commitment secret and point
of up to depth commitments, of the specified channel with the specified peer, identified by the channel database index.
Specify password if the hsm_secret is encrypted.

guesstoremote p2wpkh node_id max_channel_dbid hsm_secret [password] Brute-force the private key to our funds
from a remote unilateral close of a channel, in a case where we have lost all database data except for our hsm_secret.
The peer must be the one to close the channel (and the funds will remain unrecoverable until the channel is closed).
max_channel_dbid is your own guess on what the channel_dbid was, or at least the maximum possible value, and is

125

c-lightning, Release v0.9.0-45-g723b722-modded

usually no greater than the number of channels that the node has ever had. Specify password if the hsm_secret is
encrypted.

29.4 BUGS

You should report bugs on our github issues page, and maybe submit a fix to gain our eternal gratitude!

29.5 AUTHOR

ZmnSCPxj < ZmnSCPxj@protonmail.com > wrote the initial version of this man page, but many others did the hard
work of actually implementing lightning-hsmtool.

29.6 SEE ALSO

lightningd(8), lightningd-config(5)

29.7 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

29.8 COPYING

Note: the modules in the ccan/ directory have their own licenses, but the rest of the code is covered by the BSD-style
MIT license. Main web site: https://github.com/ElementsProject/lightning

126 Chapter 29. lightning-hsmtool – Tool for working with software HSM secrets of lightningd

mailto:ZmnSCPxj@protonmail.com
https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning

CHAPTER 30

lightning-invoice – Command for accepting payments

30.1 SYNOPSIS

invoice msatoshi label description [expiry] [fallbacks] [preimage] [exposeprivatechannels]

30.2 DESCRIPTION

The invoice RPC command creates the expectation of a payment of a given amount of milli-satoshi: it returns a unique
token which another lightning daemon can use to pay this invoice. This token includes a route hint description of an
incoming channel with capacity to pay the invoice, if any exists.

The msatoshi parameter can be the string “any”, which creates an invoice that can be paid with any amount. Otherwise
it is in millisatoshi precision; it can be a whole number, or a whole number ending in msat or sat, or a number with
three decimal places ending in sat, or a number with 1 to 11 decimal places ending in btc.

The label must be a unique string or number (which is treated as a string, so “01” is different from “1”); it is never
revealed to other nodes on the lightning network, but it can be used to query the status of this invoice.

The description is a short description of purpose of payment, e.g. 1 cup of coffee. This value is encoded into the
BOLT11 invoice and is viewable by any node you send this invoice to. It must be UTF-8, and cannot use \u JSON
escape codes.

The expiry is optionally the time the invoice is valid for; without a suffix it is interpreted as seconds, otherwise suffixes
s, m, h, d, w indicate seconds, minutes, hours, days and weeks respectively. If no value is provided the default of
604800 (1w) is used.

The fallbacks array is one or more fallback addresses to include in the invoice (in order from most-preferred to least):
note that these arrays are not currently tracked to fulfill the invoice.

The preimage is a 64-digit hex string to be used as payment preimage for the created invoice. By default, if unspecified,
lightningd will generate a secure pseudorandom preimage seeded from an appropriate entropy source on your system.
IMPORTANT: if you specify the preimage, you are responsible, to ensure appropriate care for generating using a
secure pseudorandom generator seeded with sufficient entropy, and keeping the preimage secret. This parameter is an

127

c-lightning, Release v0.9.0-45-g723b722-modded

advanced feature intended for use with cutting-edge cryptographic protocols and should not be used unless explicitly
needed.

If specified, exposeprivatechannels overrides the default route hint logic, which will use unpublished channels only
if there are no published channels. If true unpublished channels are always considered as a route hint candidate; if
false, never. If it is a short channel id (e.g. 1x1x3) or array of short channel ids, only those specific channels will be
considered candidates, even if they are public or dead-ends.

The route hint is selected from the set of incoming channels of which: peer’s balance minus their reserves is at least
msatoshi, state is normal, the peer is connected and not a dead end (i.e. has at least one other public channel). The
selection uses some randomness to prevent probing, but favors channels that become more balanced after the payment.

30.3 RETURN VALUE

On success, a hash is returned as payment_hash to be given to the payer, and the expiry_time as a UNIX timestamp. It
also returns a BOLT11 invoice as bolt11 to be given to the payer.

On failure, an error is returned and no invoice is created. If the lightning process fails before responding, the caller
should use lightning-listinvoice(7) to query whether this invoice was created or not.

The following error codes may occur:

• -1: Catchall nonspecific error.

• 900: An invoice with the given label already exists.

• 901: An invoice with the given preimage already exists.

• 902: None of the specified exposeprivatechannels were usable.

One of the following warnings may occur (on success):

• warning_offline if no channel with a currently connected peer has the incoming capacity to pay this invoice

• warning_capacity if there is no channel that has sufficient incoming capacity

• warning_deadends if there is no channel that is not a dead-end

30.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

30.5 SEE ALSO

lightning-listinvoice(7), lightning-delinvoice(7), lightning-getroute(7), lightning-sendpay(7).

30.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

128 Chapter 30. lightning-invoice – Command for accepting payments

mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

CHAPTER 31

lightning-keysend – Send funds to a node without an invoice

31.1 SYNOPSIS

keysend destination msatoshi [label] [maxfeepercent] [retry_for] [maxdelay] [exemptfee]

31.2 DESCRIPTION

The keysend RPC command attempts to find a route to the given destination, and send the specified amount to it. Un-
like the pay RPC command the keysend command does not require an invoice, instead it uses the destination
node ID, and amount to find a route to the specified node.

In order for the destination to be able to claim the payment, the payment_key is randomly generated by the sender
and included in the encrypted payload for the destination. As a consequence there is not proof-of-payment, like there
is with an invoice where the payment_key is generated on the destination, and the only way sender could have it is
by sending a payment. Please ensure that this matches your use-case when using keysend.

destination is the 33 byte, hex-encoded, node ID of the node that the payment should go to. msatoshi is in
millisatoshi precision; it can be a whole number, or a whole number with suffix msat or sat, or a three decimal point
number with suffix sat, or an 1 to 11 decimal point number suffixed by btc.

The label field is used to attach a label to payments, and is returned in lightning-listpays(7) and lightning-
listsendpays(7). The maxfeepercent limits the money paid in fees as percentage of the total amount that is to
be transferred, and defaults to 0.5. The exemptfee option can be used for tiny payments which would be dominated
by the fee leveraged by forwarding nodes. Setting exemptfee allows the maxfeepercent check to be skipped
on fees that are smaller than exemptfee (default: 5000 millisatoshi).

The response will occur when the payment fails or succeeds. Unlike lightning-pay(7), issuing the same keysend
commands multiple times will result in multiple payments being sent.

Until retry_for seconds passes (default: 60), the command will keep finding routes and retrying the payment. However,
a payment may be delayed for up to maxdelay blocks by another node; clients should be prepared for this worst
case.

129

c-lightning, Release v0.9.0-45-g723b722-modded

When using lightning-cli, you may skip optional parameters by using null. Alternatively, use -k option to provide
parameters by name.

31.3 RANDOMIZATION

To protect user privacy, the payment algorithm performs some randomization.

1: Route Randomization

Route randomization means the payment algorithm does not always use the lowest-fee or shortest route. This prevents
some highly-connected node from learning all of the user payments by reducing their fees below the network average.

2: Shadow Route

Shadow route means the payment algorithm will virtually extend the route by adding delays and fees along it, making
it appear to intermediate nodes that the route is longer than it actually is. This prevents intermediate nodes from
reliably guessing their distance from the payee.

Route randomization will never exceed maxfeepercent of the payment. Route randomization and shadow routing will
not take routes that would exceed maxdelay.

31.4 RETURN VALUE

On success, keysend will return a number of internal statistics and details of the attempts to reach the destination.

You can monitor the progress and retries of a payment using the lightning-paystatus(7) command.

The following error codes may occur:

• -1: Catchall nonspecific error.

• 203: Permanent failure at destination. The data field of the error will be routing failure object.

• 205: Unable to find a route.

• 206: Route too expensive. Either the fee or the needed total locktime for the route exceeds your maxfeepercent
or maxdelay settings, respectively. The data field of the error will indicate the actual fee as well as the feepercent
percentage that the fee has of the destination payment amount. It will also indicate the actual delay along the
route.

• 210: Payment timed out without a payment in progress.

A routing failure object has the fields below:

• erring_index: The index of the node along the route that reported the error. 0 for the local node, 1 for the
first hop, and so on.

• erring_node: The hex string of the pubkey id of the node that reported the error.

• erring_channel: The short channel ID of the channel that has the error, or 0:0:0 if the destination node
raised the error.

• failcode: The failure code, as per BOLT #4.

• channel_update. The hex string of the channel_update message received from the remote node. Only
present if error is from the remote node and the failcode has the UPDATE bit set, as per BOLT #4.

130 Chapter 31. lightning-keysend – Send funds to a node without an invoice

c-lightning, Release v0.9.0-45-g723b722-modded

31.5 AUTHOR

Christian Decker <decker@blockstream.com> is mainly responsible.

31.6 SEE ALSO

lightning-listpays(7), lightning-decodepay(7), lightning-listinvoice(7), lightning-delinvoice(7), lightning-getroute(7),
lightning-invoice(7).

31.7 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

31.5. AUTHOR 131

mailto:decker@blockstream.com
https://github.com/ElementsProject/lightning

c-lightning, Release v0.9.0-45-g723b722-modded

132 Chapter 31. lightning-keysend – Send funds to a node without an invoice

CHAPTER 32

lightning-listchannels – Command to query active lightning channels in
the entire network

32.1 SYNOPSIS

listchannels [short_channel_id] [source]

32.2 DESCRIPTION

The listchannels RPC command returns data on channels that are known to the node. Because channels may be
bidirectional, up to 2 objects will be returned for each channel (one for each direction).

If short_channel_id is a short channel id, then only known channels with a matching short_channel_id are returned.
Otherwise, it must be null.

If source is a node id, then only channels leading from that node id are returned.

If neither is supplied, data on all lightning channels known to this node, are returned. These can be local channels or
public channels broadcast on the gossip network.

32.3 RETURN VALUE

On success, an object with a “channels” key is returned containing a list of 0 or more objects.

Each object in the list contains the following data:

• source : The node providing entry to the channel, specifying the fees charged for using the channel in that
direction.

• destination : The node providing the exit point for the channel.

• short_channel_id : The channel identifier.

133

c-lightning, Release v0.9.0-45-g723b722-modded

• public : Boolean value, is publicly available. Non-local channels will only ever have this value set to true. Local
channels are side-loaded by this node, rather than obtained through the gossip network, and so may have this
value set to false.

• satoshis : Funds available in the channel.

• amount_sat : Same as above, but ending in sat.

• message_flags : Bitfield showing the presence of optional fields in the channel_update message (BOLT #7).

• channel_flags : Bitfields indicating the direction of the channel and signaling various options concerning the
channel. (BOLT #7).

• active : Boolean value, is available for routing. This is linked to the channel flags data, where if the second bit is
set, signals a channels temporary unavailability (due to loss of connectivity) OR permanent unavailability where
the channel has been closed but not settlement on-chain.

• last_update : Unix timestamp (seconds) showing when the last channel_update message was received.

• base_fee_millisatoshi : The base fee (in millisatoshi) charged for the HTLC (BOLT #7; equivalent to
fee_base_msat).

• fee_per_millionth : The amount (in millionths of a satoshi) charged per transferred satoshi (BOLT #7; equivalent
to fee_proportional_millionths).

• delay : The number of blocks of additional delay required when forwarding an HTLC in this direction. (BOLT
#7; equivalent to cltv_expiry_delta).

• htlc_minimum_msat : The minimum payment which can be sent through this channel.

• htlc_maximum_msat : The maximum payment which can be sent through this channel.

If short_channel_id or source is supplied and no matching channels are found, a “channels” object with an empty list
is returned.

On error the returned object will contain code and message properties, with code being one of the following:

• -32602: If the given parameters are wrong.

32.4 AUTHOR

Michael Hawkins <michael.hawkins@protonmail.com>.

32.5 SEE ALSO

lightning-fundchannel(7), lightning-listnodes(7)

32.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

Lightning RFC site

• BOLT #7: https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip.md

134 Chapter 32. lightning-listchannels – Command to query active lightning channels in the entire
network

mailto:michael.hawkins@protonmail.com
https://github.com/ElementsProject/lightning
https://github.com/lightningnetwork/lightning-rfc/blob/master/07-routing-gossip

CHAPTER 33

lightning-listforwards – Command showing all htlcs and their information

33.1 SYNOPSIS

listforwards

33.2 DESCRIPTION

The listforwards RPC command displays all htlcs that have been attempted to be forwarded by the c-lightning node.

33.3 RETURN VALUE

On success one array will be returned: forwards with htlcs that have been processed

Each entry in forwards will include:

• in_channel: the short_channel_id of the channel that recieved the incoming htlc.

• in_msatoshi, in_msat - amount of msatoshis that are forwarded to this node.

• status: status can be either offered if the routing process is still ongoing, settled if the routing process is com-
pleted or failed if the routing process could not be completed.

• received_time: timestamp when incoming htlc was received.

The following additional fields are usually present, but will not be for some variants of status local_failed (if it failed
before we determined these):

• out_channel: the short_channel_id of to which the outgoing htlc is supposed to be forwarded.

• fee, fee_msat: fee offered for forwarding the htlc in msatoshi.

• out_msatoshi, out_msat - amount of msatoshis to be forwarded.

The following fields may be offered, but for old forgotten HTLCs they will be omitted:

135

c-lightning, Release v0.9.0-45-g723b722-modded

• payment_hash - the payment_hash belonging to the HTLC.

If the status is not ‘offered’, the following additional fields are present:

• resolved_time - timestamp when htlc was resolved (settled or failed).

33.4 AUTHOR

Rene Pickhardt <r.pickhardt@gmail.com> is mainly responsible.

33.5 SEE ALSO

lightning-getinfo(7)

33.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

136 Chapter 33. lightning-listforwards – Command showing all htlcs and their information

mailto:r.pickhardt@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 34

lightning-listfunds – Command showing all funds currently managed by
the c-lightning node

34.1 SYNOPSIS

listfunds

34.2 DESCRIPTION

The listfunds RPC command displays all funds available, either in unspent outputs (UTXOs) in the internal wallet or
funds locked in currently open channels.

34.3 RETURN VALUE

On success two arrays will be returned: outputs with funds currently locked onchain in UTXOs and channels with
funds readily spendable in channels.

Each entry in outputs will include:

• txid

• output (the index of the output in the transaction)

• value (the output value in satoshis)

• amount_msat (the same as value, but in millisatoshi with msat appended)

• address

• scriptpubkey (the ScriptPubkey of the output, in hex)

• status (whether unconfirmed, confirmed, or spent)

• reserved (whether this is UTXO is currently reserved for an in-flight tx)

137

c-lightning, Release v0.9.0-45-g723b722-modded

Each entry in channels will include:

• peer_id - the peer with which the channel is opened.

• short_channel_id - as per BOLT 7 (representing the block, transaction number and output index of the channel
funding transaction).

• channel_sat - available satoshis on our node’s end of the channel (values rounded down to satoshis as internal
storage is in millisatoshi).

• our_amount_msat - same as above, but in millisatoshis with msat appended.

• channel_total_sat - total channel value in satoshi

• amount_msat - same as above, but in millisatoshis with msat appended.

• funding_txid - funding transaction id.

• funding_output - the index of the output in the funding transaction.

• connected - whether the channel peer is connected.

• state - the channel state, in particular CHANNELD_NORMAL means the channel can be used normally.

34.4 AUTHOR

Felix <fixone@gmail.com> is mainly responsible.

34.5 SEE ALSO

lightning-newaddr(7), lightning-fundchannel(7), lightning-withdraw(7)

34.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

138 Chapter 34. lightning-listfunds – Command showing all funds currently managed by the
c-lightning node

mailto:fixone@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 35

lightning-listinvoices – Command for querying invoice status

35.1 SYNOPSIS

listinvoices [label]

35.2 DESCRIPTION

The listinvoices RPC command gets the status of a specific invoice, if it exists, or the status of all invoices if given no
argument.

35.3 RETURN VALUE

On success, an array invoices of objects is returned. Each object contains label, payment_hash, status (one of unpaid,
paid or expired), payment_preimage (for paid invoices), and expiry_time (a UNIX timestamp). If the msatoshi argu-
ment to lightning-invoice(7) was not “any”, there will be an msatoshi field as a number, and amount_msat as the same
number ending in msat. If the invoice status is paid, there will be a pay_index field and an msatoshi_received field
(which may be slightly greater than msatoshi as some overpaying is permitted to allow clients to obscure payment
paths); there will also be an amount_received_msat field with the same number as msatoshi_received but ending in
msat.

35.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

139

mailto:rusty@rustcorp.com.au

c-lightning, Release v0.9.0-45-g723b722-modded

35.5 SEE ALSO

lightning-waitinvoice(7), lightning-delinvoice(7), lightning-invoice(7).

35.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

140 Chapter 35. lightning-listinvoices – Command for querying invoice status

https://github.com/ElementsProject/lightning

CHAPTER 36

lightning-listpays – Command for querying payment status

36.1 SYNOPSIS

listpays [bolt11]

36.2 DESCRIPTION

The listpay RPC command gets the status of all pay commands, or a single one if bolt11 is specified.

36.3 RETURN VALUE

On success, an array of objects is returned. Each object contains:

bolt11 the bolt11 argument given to pay (see below for exceptions).

status one of complete, failed or pending.

payment_preimage (if status is complete) proves payment was received.

label optional label, if provided to pay.

amount_sent_msat total amount sent, in “NNNmsat” format.

For old payments (pre-0.7) we didn’t save the bolt11 string, so in its place are three other fields:

payment_hash the hash of the payment_preimage which will prove payment.

destination the final destination of the payment.

amount_msat the amount the destination received, in “NNNmsat” format.

These three can all be extracted from bolt11, hence are obsolete.

141

c-lightning, Release v0.9.0-45-g723b722-modded

36.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

36.5 SEE ALSO

lightning-pay(7), lightning-paystatus(7), lightning-listsendpays(7).

36.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

142 Chapter 36. lightning-listpays – Command for querying payment status

mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

CHAPTER 37

lightning-listpeers – Command returning data on connected lightning
nodes

37.1 SYNOPSIS

listpeers [id] [level]

37.2 DESCRIPTION

The listpeers RPC command returns data on nodes that are connected or are not connected but have open channels
with this node.

Once a connection to another lightning node has been established, using the connect command, data on the node can
be returned using listpeers and the id that was used with the connect command.

If no id is supplied, then data on all lightning nodes that are connected, or not connected but have open channels with
this node, are returned.

Supplying id will filter the results to only return data on a node with a matching id, if one exists.

Supplying level will show log entries related to that peer at the given log level. Valid log levels are “io”, “debug”,
“info”, and “unusual”.

If a channel is open with a node and the connection has been lost, then the node will still appear in the output of the
command and the value of the connected attribute of the node will be “false”.

The channel will remain open for a set blocktime, after which if the connection has not been re-established, the channel
will close and the node will no longer appear in the command output.

37.3 RETURN VALUE

On success, an object with a “peers” key is returned containing a list of 0 or more objects.

143

c-lightning, Release v0.9.0-45-g723b722-modded

Each object in the list contains the following data:

• id : The unique id of the peer

• connected : A boolean value showing the connection status

• netaddr : A list of network addresses the node is listening on

• features : Bit flags showing supported features (BOLT #9)

• channels : An array of objects describing channels with the peer.

• log : Only present if level is set. List logs related to the peer at the specified level

If id is supplied and no matching nodes are found, a “peers” object with an empty list is returned.

The objects in the channels array will have at least these fields:

• state: Any of these strings:

– "OPENINGD": The channel funding protocol with the peer is ongoing and both sides are negotiating
parameters.

– "CHANNELD_AWAITING_LOCKIN": The peer and you have agreed on channel parameters and are
just waiting for the channel funding transaction to be confirmed deeply. Both you and the peer must
acknowledge the channel funding transaction to be confirmed deeply before entering the next state.

– "CHANNELD_NORMAL": The channel can be used for normal payments.

– "CHANNELD_SHUTTING_DOWN": A mutual close was requested (by you or peer) and both of you are
waiting for HTLCs in-flight to be either failed or succeeded. The channel can no longer be used for normal
payments and forwarding. Mutual close will proceed only once all HTLCs in the channel have either been
fulfilled or failed.

– "CLOSINGD_SIGEXCHANGE": You and the peer are negotiating the mutual close onchain fee.

– "CLOSINGD_COMPLETE": You and the peer have agreed on the mutual close onchain fee and are await-
ing the mutual close getting confirmed deeply.

– "AWAITING_UNILATERAL": You initiated a unilateral close, and are now waiting for the peer-selected
unilateral close timeout to complete.

– "FUNDING_SPEND_SEEN": You saw the funding transaction getting spent (usually the peer initiated a
unilateral close) and will now determine what exactly happened (i.e. if it was a theft attempt).

– "ONCHAIN": You saw the funding transaction getting spent and now know what happened (i.e. if it was
a proper unilateral close by the peer, or a theft attempt).

– "CLOSED": The channel closure has been confirmed deeply. The channel will eventually be removed
from this array.

• status: An array of strings containing the most important log messages relevant to this channel. Also known as
the “billboard”.

• owner: A string describing which particular sub-daemon of lightningd currently is responsible for this
channel. One of: "lightning_openingd", "lightning_channeld", "lightning_closingd",
"lightning_onchaind".

• to_us_msat: A string describing how much of the funds is owned by us; a number followed by a string unit.

• total_msat: A string describing the total capacity of the channel; a number followed by a string unit.

These fields may exist if the channel has gotten beyond the "OPENINGD" state, or in various circumstances:

• short_channel_id: A string of the short channel ID for the channel; Format is "BBBBxTTTxOOO", where
"BBBB" is the numeric block height at which the funding transaction was confirmed, "TTT" is the numeric

144 Chapter 37. lightning-listpeers – Command returning data on connected lightning nodes

c-lightning, Release v0.9.0-45-g723b722-modded

funding transaction index within that block, and "OOO" is the numeric output index of the transaction output
that actually anchors this channel.

• direction: The channel-direction we own, as per BOLT #7. We own channel-direction 0 if our node ID is “less
than” the peer node ID in a lexicographical ordering of our node IDs, otherwise we own channel-direction 1.
Our channel_update will use this direction.

• channel_id: The full channel ID of the channel; the funding transaction ID XORed with the output number.

• funding_txid: The funding transaction ID of the channel.

• close_to: The raw scriptPubKey that was indicated in the starting fundchannel_start command and ac-
cepted by the peer. If the scriptPubKey encodes a standardized address, an additional close_to_addr field
will be present with the standardized address.

• private: A boolean, true if the channel is unpublished, false if the channel is published.

• funding_msat: An object, whose field names are the node IDs involved in the channel, and whose values are
strings (numbers with a unit suffix) indicating how much that node originally contributed in opening the channel.

• min_to_us_msat: A string describing the historic point at which we owned the least amount of funds in this
channel; a number followed by a string unit. If the peer were to succesfully steal from us, this is the amount we
would still retain.

• max_to_us_msat: A string describing the historic point at which we owned the most amount of funds in this
channel; a number followed by a string unit. If we were to successfully steal from the peer, this is the amount
we could potentially get.

• dust_limit_msat: A string describing an amount; if an HTLC or the amount wholly-owned by one node is at or
below this amount, it will be considered “dusty” and will not appear in a close transaction, and will be donated
to miners as fee; a number followed by a string unit.

• max_total_htlc_in_msat: A string describing an amount; the sum of all HTLCs in the channel cannot exceed
this amount; a number followed by a string unit.

• their_reserve_msat: A string describing the minimum amount that the peer must keep in the channel when it
attempts to send out; if it has less than this in the channel, it cannot send to us on that channel; a number followed
by a string unit. We impose this on them, default is 1% of the total channel capacity.

• our_reserve_msat: A string describing the minimum amount that you must keep in the channel when you
attempt to send out; if you have less than this in the channel, you cannot send out via this channel; a number
followed by a string unit. The peer imposes this on us, default is 1% of the total channel capacity.

• spendable_msat and receivable_msat: A string describing an estimate of how much we can send or receive over
this channel in a single payment (or payment-part for multi-part payments); a number followed by a string unit.
This is an estimate, which can be wrong because adding HTLCs requires an increase in fees paid to onchain
miners, and onchain fees change dynamically according to onchain activity. For a sufficiently-large channel,
this can be limited by the rules imposed under certain blockchains; for example, individual Bitcoin mainnet
payment-parts cannot exceed 42.94967295 mBTC.

• minimum_htlc_in_msat: A string describing the minimum amount that an HTLC must have before we accept it.

• their_to_self_delay: The number of blocks that the peer must wait to claim their funds, if they close unilaterally.

• our_to_self_delay: The number of blocks that you must wait to claim your funds, if you close unilaterally.

• max_accepted_htlcs: The maximum number of HTLCs you will accept on this channel.

• in_payments_offered: The number of incoming HTLCs offered over this channel.

• in_offered_msat: A string describing the total amount of all incoming HTLCs offered over this channel; a
number followed by a string unit.

• in_payments_fulfilled: The number of incoming HTLCs offered and successfully claimed over this channel.

37.3. RETURN VALUE 145

c-lightning, Release v0.9.0-45-g723b722-modded

• in_fulfilled_msat: A string describing the total amount of all incoming HTLCs offered and successfully claimed
over this channel; a number followed by a string unit.

• out_payments_offered: The number of outgoing HTLCs offered over this channel.

• out_offered_msat: A string describing the total amount of all outgoing HTLCs offered over this channel; a
number followed by a string unit.

• out_payments_fulfilled: The number of outgoing HTLCs offered and successfully claimed over this channel.

• out_fulfilled_msat: A string describing the total amount of all outgoing HTLCs offered and successfully claimed
over this channel; a number followed by a string unit.

• htlcs: An array of objects describing the HTLCs currently in-flight in the channel.

Objects in the htlcs array will contain these fields:

• direction: Either the string "out" or "in", whether it is an outgoing or incoming HTLC.

• id: A numeric ID uniquely identifying this HTLC.

• amount_msat: The value of the HTLC.

• expiry: The blockheight at which the HTLC will be forced to return to its offerer: an "in" HTLC will be
returned to the peer, an "out" HTLC will be returned to you. NOTE If the expiry of any outgoing HTLC will
arrive in the next block, lightningd(8) will automatically unilaterally close the channel in order to enforce
the timeout onchain.

• payment_hash: The payment hash, whose preimage must be revealed to successfully claim this HTLC.

• state: A string describing whether the HTLC has been communicated to or from the peer, whether it has been
signed in a new commitment, whether the previous commitment (that does not contain it) has been revoked, as
well as when the HTLC is fulfilled or failed offchain.

• local_trimmed: A boolean, existing and true if the HTLC is not actually instantiated as an output (i.e.
“trimmed”) on the commitment transaction (and will not be instantiated on a unilateral close). Generally true if
the HTLC is below the dust_limit_msat for the channel.

On error the returned object will contain code and message properties, with code being one of the following:

• -32602: If the given parameters are wrong.

37.4 AUTHOR

Michael Hawkins <michael.hawkins@protonmail.com>.

37.5 SEE ALSO

lightning-connect(7), lightning-fundchannel_start(7)

37.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning Lightning RFC site (BOLT #9):
https://github.com/lightningnetwork/lightning-rfc/blob/master/09-features.md

146 Chapter 37. lightning-listpeers – Command returning data on connected lightning nodes

mailto:michael.hawkins@protonmail.com
https://github.com/ElementsProject/lightning
https://github.com/lightningnetwork/lightning-rfc/blob/master/09-features

CHAPTER 38

lightning-listsendpays – Low-level command for querying sendpay status

38.1 SYNOPSIS

listsendpays [bolt11] [payment_hash]

38.2 DESCRIPTION

The listsendpays RPC command gets the status of all sendpay commands (which is also used by the pay command),
or with bolt11 or payment_hash limits results to that specific payment. You cannot specify both.

Note that in future there may be more than one concurrent sendpay command per pay, so this command should be
used with caution.

38.3 RETURN VALUE

On success, an array of objects is returned. Each object contains:

id unique internal value assigned at creation

payment_hash the hash of the payment_preimage which will prove payment.

destination the final destination of the payment.

amount_msat the amount the destination received, in “NNNmsat” format.

created_at the UNIX timestamp showing when this payment was initiated.

status one of complete, failed or pending.

payment_preimage (if status is complete) proves payment was received.

label optional label, if provided to sendpay.

bolt11 the bolt11 argument given to pay (may be missing for pre-0.7 payments).

147

c-lightning, Release v0.9.0-45-g723b722-modded

38.4 AUTHOR

Christian Decker <decker.christian@gmail.com> is mainly responsible.

38.5 SEE ALSO

lightning-listpays(7), lightning-sendpay(7), lightning-listinvoice(7).

38.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

148 Chapter 38. lightning-listsendpays – Low-level command for querying sendpay status

mailto:decker.christian@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 39

lightning-newaddr – Command for generating a new address to be used
by c-lightning

39.1 SYNOPSIS

newaddr [addresstype]

39.2 DESCRIPTION

The newaddr RPC command generates a new address which can subsequently be used to fund channels managed by
the c-lightning node.

The funding transaction needs to be confirmed before funds can be used.

addresstype specifies the type of address wanted; i.e. p2sh-segwit (e.g. 2MxaozoqWwiU-
cuD9KKgUSrLFDafLqimT9Ta on bitcoin testnet or 3MZxzq3jBSKNQ2e7dzneo9hy4FvNzmMmt3 on bit-
coin mainnet) or bech32 ‘ (e.g. tb1qu9j4lg5f9rgjyfhvfd905vw46eg39czmktxqgg on bitcoin testnet or
bc1qwqdg6squsna38e46795at95yu9atm8azzmyvckulcc7kytlcckxswvvzej on bitcoin mainnet). The special value
‘all generates both address types for the same underlying key.

If not specified the address generated is bech32.

39.3 RETURN VALUE

On success, a bech32 address and/or a p2sh-segwit address will be returned.

39.4 ERRORS

If an unrecognized address type is requested an error message will be returned.

149

c-lightning, Release v0.9.0-45-g723b722-modded

39.5 AUTHOR

Felix <fixone@gmail.com> is mainly responsible.

39.6 SEE ALSO

lightning-listfunds(7), lightning-fundchannel(7), lightning-withdraw(7)

39.7 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

150Chapter 39. lightning-newaddr – Command for generating a new address to be used by c-lightning

mailto:fixone@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 40

lightning-pay – Command for sending a payment to a BOLT11 invoice

40.1 SYNOPSIS

pay bolt11 [msatoshi] [label] [riskfactor] [maxfeepercent] [retry_for] [maxdelay] [exemptfee]

40.2 DESCRIPTION

The pay RPC command attempts to find a route to the given destination, and send the funds it asks for. If the bolt11
does not contain an amount, msatoshi is required, otherwise if it is specified it must be null. msatoshi is in millisatoshi
precision; it can be a whole number, or a whole number with suffix msat or sat, or a three decimal point number with
suffix sat, or an 1 to 11 decimal point number suffixed by btc.

The label field is used to attach a label to payments, and is returned in lightning-listpays(7) and lightning-
listsendpays(7). The riskfactor is described in detail in lightning-getroute(7), and defaults to 10. The maxfeepercent
limits the money paid in fees, and defaults to 0.5. The maxfeepercent is a percentage of the amount that is to
be paid. The exemptfee option can be used for tiny payments which would be dominated by the fee leveraged by
forwarding nodes. Setting exemptfee allows the maxfeepercent check to be skipped on fees that are smaller
than exemptfee (default: 5000 millisatoshi).

The response will occur when the payment fails or succeeds. Once a payment has succeeded, calls to pay with the
same bolt11 will succeed immediately.

Until retry_for seconds passes (default: 60), the command will keep finding routes and retrying the payment. However,
a payment may be delayed for up to maxdelay blocks by another node; clients should be prepared for this worst
case.

When using lightning-cli, you may skip optional parameters by using null. Alternatively, use -k option to provide
parameters by name.

151

c-lightning, Release v0.9.0-45-g723b722-modded

40.3 RANDOMIZATION

To protect user privacy, the payment algorithm performs some randomization.

1: Route Randomization

Route randomization means the payment algorithm does not always use the lowest-fee or shortest route. This prevents
some highly-connected node from learning all of the user payments by reducing their fees below the network average.

2: Shadow Route

Shadow route means the payment algorithm will virtually extend the route by adding delays and fees along it, making
it appear to intermediate nodes that the route is longer than it actually is. This prevents intermediate nodes from
reliably guessing their distance from the payee.

Route randomization will never exceed maxfeepercent of the payment. Route randomization and shadow routing will
not take routes that would exceed maxdelay.

40.4 RETURN VALUE

On success, this returns the payment_preimage which hashes to the payment_hash to prove that the payment was
successful. It will also return, a getroute_tries and a sendpay_tries statistics for the number of times it internally called
getroute and sendpay.

You can monitor the progress and retries of a payment using the lightning-paystatus(7) command.

The following error codes may occur:

• -1: Catchall nonspecific error.

• 201: Already paid with this hash using different amount or destination.

• 203: Permanent failure at destination. The data field of the error will be routing failure object.

• 205: Unable to find a route.

• 206: Route too expensive. Either the fee or the needed total locktime for the route exceeds your maxfeepercent
or maxdelay settings, respectively. The data field of the error will indicate the actual fee as well as the feepercent
percentage that the fee has of the destination payment amount. It will also indicate the actual delay along the
route.

• 207: Invoice expired. Payment took too long before expiration, or already expired at the time you initiated
payment. The data field of the error indicates now (the current time) and expiry (the invoice expiration) as
UNIX epoch time in seconds.

• 210: Payment timed out without a payment in progress.

Error codes 202 and 204 will only get reported at sendpay; in pay we will keep retrying if we would have gotten those
errors.

A routing failure object has the fields below:

• erring_index: The index of the node along the route that reported the error. 0 for the local node, 1 for the first
hop, and so on.

• erring_node: The hex string of the pubkey id of the node that reported the error.

• erring_channel: The short channel ID of the channel that has the error, or 0:0:0 if the destination node raised
the error.

• failcode: The failure code, as per BOLT #4.

152 Chapter 40. lightning-pay – Command for sending a payment to a BOLT11 invoice

c-lightning, Release v0.9.0-45-g723b722-modded

• channel_update. The hex string of the channel_update message received from the remote node. Only present if
error is from the remote node and the failcode has the UPDATE bit set, as per BOLT #4.

The data field of errors will include statistics getroute_tries and sendpay_tries. It will also contain a failures field with
detailed data about routing errors.

40.5 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

40.6 SEE ALSO

lightning-listpays(7), lightning-decodepay(7), lightning-listinvoice(7), lightning-delinvoice(7), lightning-getroute(7),
lightning-invoice(7).

40.7 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

40.5. AUTHOR 153

mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

c-lightning, Release v0.9.0-45-g723b722-modded

154 Chapter 40. lightning-pay – Command for sending a payment to a BOLT11 invoice

CHAPTER 41

lightning-plugin – Manage plugins with RPC

41.1 SYNOPSIS

plugin command [parameter] [second_parameter]

41.2 DESCRIPTION

The plugin RPC command allows to manage plugins without having to restart lightningd. It takes 1 to 3 parameters:
a command (start/stop/startdir/rescan/list) which describes the action to take and optionally one or two parameters
which describes the plugin on which the action has to be taken.

The start command takes a path as the first parameter and will load the plugin available from this path. It will wait for
the plugin to complete the handshake with lightningd for 20 seconds at the most.

The stop command takes a plugin name as parameter. It will kill and unload the specified plugin.

The startdir command takes a directory path as first parameter and will load all plugins this directory contains. It will
wait for each plugin to complete the handshake with lightningd for 20 seconds at the most.

The rescan command starts all not-already-loaded plugins from the default plugins directory (by default ~/.light-
ning/plugins).

The list command will return all the active plugins.

41.3 RETURN VALUE

On success, all subcommands but stop return an array plugins of objects, one by plugin. Each object contains the name
of the plugin (name field) and its status (active boolean field). Since plugins are configured asynchronously, a freshly
started plugin may not appear immediately.

On error, the reason why the action could not be taken upon the plugin is returned.

155

c-lightning, Release v0.9.0-45-g723b722-modded

41.4 AUTHOR

Antoine Poinsot <darosior@protonmail.com> is mainly responsible.

41.5 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

156 Chapter 41. lightning-plugin – Manage plugins with RPC

mailto:darosior@protonmail.com
https://github.com/ElementsProject/lightning

CHAPTER 42

lightning-reserveinputs – Construct a transaction and reserve the UTXOs
it spends

42.1 SYNOPSIS

reserveinputs psbt [exclusive]

42.2 DESCRIPTION

The reserveinputs RPC command places (or increases) reservations on any inputs specified in psbt which are known
to lightningd. It will fail with an error if any of the inputs are known to be spent, and ignore inputs which are unknown.

Normally the command will fail (with no reservations made) if an input is already reserved. If exclusive is set to False,
then existing reservations are simply extended, rather than causing failure.

42.3 RETURN VALUE

On success, a reservations array is returned, with an entry for each input which was reserved:

• txid is the input transaction id.

• vout is the input index.

• was_reserved indicates whether the input was already reserved.

• reserved indicates that the input is now reserved (i.e. true).

• reserved_to_block indicates what blockheight the reservation will expire.

On failure, an error is reported and no UTXOs are reserved.

The following error codes may occur:

• -32602: Invalid parameter, such as specifying a spent/reserved input in psbt.

157

c-lightning, Release v0.9.0-45-g723b722-modded

42.4 AUTHOR

niftynei <niftynei@gmail.com> is mainly responsible.

42.5 SEE ALSO

lightning-unreserveinputs(7), lightning-signpsbt(7), lightning-sendpsbt(7)

42.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

158Chapter 42. lightning-reserveinputs – Construct a transaction and reserve the UTXOs it spends

mailto:niftynei@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 43

lightning-sendonion – Send a payment with a custom onion packet

43.1 SYNOPSIS

sendonion onion first_hop payment_hash [label] [shared_secrets] [partid] [bolt11] [msatoshi]

43.2 DESCRIPTION

The sendonion RPC command can be used to initiate a payment attempt with a custom onion packet. The onion
packet is used to deliver instructions for hops along the route on how to behave. Normally these instructions are
indications on where to forward a payment and what parameters to use, or contain details of the payment for the final
hop. However, it is possible to add arbitrary information for hops in the custom onion, allowing for custom extensions
that are not directly supported by c-lightning.

The onion is specific to the route that is being used and the payment_hash used to construct, and therefore cannot
be reused for other payments or to attempt a separate route. The custom onion can generally be created using the
devtools/onion CLI tool, or the createonion RPC command.

The onion parameter is a hex-encoded 1366 bytes long blob that was returned by either of the tools that can generate
onions. It contains the payloads destined for each hop and some metadata. Please refer to BOLT 04 for further details.

The first_hop parameter instructs c-lightning which peer to send the onion to. It is a
JSON dictionary that corresponds to the first element of the route array returned by getroute.
The following is a minimal example telling c-lightning to use any available channel to
022d223620a359a47ff7f7ac447c85c46c923da53389221a0054c11c1e3ca31d59 to add an HTLC
for 1002 millisatoshis and a delay of 21 blocks on top of the current blockheight:

{
"id": "022d223620a359a47ff7f7ac447c85c46c923da53389221a0054c11c1e3ca31d59",
"direction": 1,
"amount_msat": "1002msat",
"delay": 21,

}

159

https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing

c-lightning, Release v0.9.0-45-g723b722-modded

The payment_hash parameter specifies the 32 byte hex-encoded hash to use as a challenge to the HTLC that we are
sending. It is specific to the onion and has to match the one the onion was created with.

The label parameter can be used to provide a human readable reference to retrieve the payment at a later time.

The shared_secrets parameter is a JSON list of 32 byte hex-encoded secrets that were used when creating the onion.
c-lightning can send a payment with a custom onion without the knowledge of these secrets, however it will not be able
to parse an eventual error message since that is encrypted with the shared secrets used in the onion. If shared_secrets
is provided c-lightning will decrypt the error, act accordingly, e.g., add a channel_update included in the error to
its network view, and set the details in listsendpays correctly. If it is not provided c-lightning will store the encrypted
onion, and expose it in listsendpays allowing the caller to decrypt it externally. The following is an example of a 3 hop
onion:

[
"298606954e9de3e9d938d18a74fed794c440e8eda82e52dc08600953c8acf9c4",
"2dc094de72adb03b90894192edf9f67919cb2691b37b1f7d4a2f4f31c108b087",
"a7b82b240dbd77a4ac8ea07709b1395d8c510c73c17b4b392bb1f0605d989c85"

]

If shared_secrets is not provided the c-lightning node does not know how long the route is, which channels or nodes
are involved, and what an eventual error could have been. It can therefore be used for oblivious payments.

The partid value, if provided and non-zero, allows for multiple parallel partial payments with the same payment_hash.

The bolt11 parameter, if provided, will be returned in waitsendpay and listsendpays results.

The msatoshi parameter is used to annotate the payment, and is returned by waitsendpay and listsendpays.

43.3 RETURN VALUE

On success, an object similar to the output of sendpay will be returned. This object will have a status field that is
typically the string “pending”, but may be “complete” if the payment was already performed successfully.

If shared_secrets was provided and an error was returned by one of the intermediate nodes the error details are de-
crypted and presented here. Otherwise the error code is 202 for an unparseable onion.

43.4 AUTHOR

Christian Decker <decker.christian@gmail.com> is mainly responsible.

43.5 SEE ALSO

lightning-createonion(7), lightning-sendpay(7), lightning-listsendpays(7)

43.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

160 Chapter 43. lightning-sendonion – Send a payment with a custom onion packet

mailto:decker.christian@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 44

lightning-sendpay – Low-level command for sending a payment via a route

44.1 SYNOPSIS

sendpay route payment_hash [label] [msatoshi] [bolt11] [payment_secret] [partid]

44.2 DESCRIPTION

The sendpay RPC command attempts to send funds associated with the given payment_hash, along a route to the final
destination in the route.

Generally, a client would call lightning-getroute(7) to resolve a route, then use sendpay to send it. If it fails, it would
call lightning-getroute(7) again to retry.

The response will occur when the payment is on its way to the destination. The sendpay RPC command does not wait
for definite success or definite failure of the payment. Instead, use the waitsendpay RPC command to poll or wait for
definite success or definite failure.

The label and bolt11 parameters, if provided, will be returned in waitsendpay and listsendpays results.

The msatoshi amount must be provided if partid is non-zero, otherwise it must be equal to the final amount to the
destination. By default it is in millisatoshi precision; it can be a whole number, or a whole number ending in msat or
sat, or a number with three decimal places ending in sat, or a number with 1 to 11 decimal places ending in btc.

The payment_secret is the value that the final recipient requires to accept the payment, as defined by the
payment_data field in BOLT 4 and the s field in the BOLT 11 invoice format. It is required if partid is non-
zero.

The partid value, if provided and non-zero, allows for multiple parallel partial payments with the same payment_hash.
The msatoshi amount (which must be provided) for each sendpay with matching payment_hash must be equal, and
sendpay will fail if there are already msatoshi worth of payments pending.

Once a payment has succeeded, calls to sendpay with the same payment_hash but a different msatoshi or destination
will fail; this prevents accidental multiple payments. Calls to sendpay with the same payment_hash, msatoshi, and
destination as a previous successful payment (even if a different route or partid) will return immediately with success.

161

c-lightning, Release v0.9.0-45-g723b722-modded

44.3 RETURN VALUE

On success, an object similar to the output of listsendpays will be returned. This object will have a status field that is
typically the string “pending”, but may be “complete” if the payment was already performed successfully.

On error, if the error occurred from a node other than the final destination, the route table will be updated so that
lightning-getroute(7) should return an alternate route (if any). An error from the final destination implies the payment
should not be retried.

The following error codes may occur:

• -1: Catchall nonspecific error.

• 201: Already paid with this hash using different amount or destination.

• 202: Unparseable onion reply. The data field of the error will have an onionreply field, a hex string representa-
tion of the raw onion reply.

• 203: Permanent failure at destination. The data field of the error will be routing failure object.

• 204: Failure along route; retry a different route. The data field of the error will be routing failure object.

A routing failure object has the fields below:

• erring_index. The index of the node along the route that reported the error. 0 for the local node, 1 for the first
hop, and so on.

• erring_node. The hex string of the pubkey id of the node that reported the error.

• erring_channel. The short channel ID of the channel that has the error, or 0:0:0 if the destination node raised
the error.

• failcode. The failure code, as per BOLT #4.

• channel_update. The hex string of the channel_update message received from the remote node. Only present if
error is from the remote node and the failcode has the UPDATE bit set, as per BOLT #4.

44.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

44.5 SEE ALSO

lightning-listinvoice(7), lightning-delinvoice(7), lightning-getroute(7), lightning-invoice(7), lightning-pay(7),
lightning-waitsendpay(7).

44.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

162 Chapter 44. lightning-sendpay – Low-level command for sending a payment via a route

mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

CHAPTER 45

lightning-setchannelfee – Command for setting specific routing fees on a
lightning channel

45.1 SYNOPSIS

setchannelfee id [base] [ppm]

45.2 DESCRIPTION

The setchannelfee RPC command sets channel specific routing fees as defined in BOLT #7. The channel has to
be in normal or awaiting state. This can be checked by listpeers reporting a state of CHANNELD_NORMAL or
CHANNELD_AWAITING_LOCKIN for the channel.

id is required and should contain a scid (short channel ID), channel id or peerid (pubkey) of the channel to be mod-
ified. If id is set to “all”, the fees for all channels are updated that are in state CHANNELD_NORMAL or CHAN-
NELD_AWAITING_LOCKIN.

base is an optional value in millisatoshi that is added as base fee to any routed payment. If the parameter is left out,
the global config value fee-base will be used again. It can be a whole number, or a whole number ending in msat or
sat, or a number with three decimal places ending in sat, or a number with 1 to 11 decimal places ending in btc.

ppm is an optional value that is added proportionally per-millionths to any routed payment volume in satoshi. For
example, if ppm is 1,000 and 1,000,000 satoshi is being routed trhough the channel, an proportional fee of 1,000
satoshi is added, resulting in a 0.1% fee. If the parameter is left out, the global config value will be used again.

45.3 RETURN VALUE

On success, an object with the new values base and ppm along with an array channels which contains objects with
fields peer_id, channel_id and short_channel_id.

163

c-lightning, Release v0.9.0-45-g723b722-modded

45.4 ERRORS

The following error codes may occur:

• -1: Channel is in incorrect state, i.e. Catchall nonspecific error.

• -32602: JSONRPC2_INVALID_PARAMS, i.e. Given id is not a channel ID or short channel ID.

45.5 AUTHOR

Michael Schmoock <michael@schmoock.net> is the author of this feature. Rusty Russell <rusty@rustcorp.com.au>
is mainly responsible for the c-lightning project.

45.6 SEE ALSO

lightningd-config(5), lightning-fundchannel(7), lightning-listchannels(7), lightning-listpeers(7)

45.7 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

164Chapter 45. lightning-setchannelfee – Command for setting specific routing fees on a lightning
channel

mailto:michael@schmoock.net
mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

CHAPTER 46

lightning-signmessage – Command to create a signature from this node

46.1 SYNOPSIS

signmessage message

46.2 DESCRIPTION

The signmessage RPC command creates a digital signature of message using this node’s secret key. A receiver who
knows your node’s id and the message can be sure that the resulting signature could only be created by something with
access to this node’s secret key.

message must be less that 65536 characters.

46.3 RETURN VALUE

An object with attributes signature, recid and zbase is returned. zbase is the result of signature and recid encoded in a
style compatible with lnd’s SignMessageRequest.

46.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

46.5 SEE ALSO

lightning-checkmessage(7)

165

https://api.lightning.community/#grpc-request-signmessagerequest
mailto:rusty@rustcorp.com.au

c-lightning, Release v0.9.0-45-g723b722-modded

46.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

166 Chapter 46. lightning-signmessage – Command to create a signature from this node

https://github.com/ElementsProject/lightning

CHAPTER 47

lightning-txdiscard – Abandon a transaction from txprepare, release inputs

47.1 SYNOPSIS

txdiscard txid

47.2 DESCRIPTION

The txdiscard RPC command releases inputs which were reserved for use of the txid from lightning-txprepare(7).

47.3 RETURN VALUE

On success, an object with attributes unsigned_tx and txid will be returned, exactly as from lightning-txprepare(7).

If there is no matching txid, an error is reported. Note that this may happen due to incorrect usage (such as txdiscard
or txsend already being called for txid) or due to lightningd restarting, which implicitly calls txdiscard on all outputs.

The following error codes may occur:

• -1: An unknown txid.

47.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

47.5 SEE ALSO

lightning-txprepare(7), lightning-txsend(7)

167

mailto:rusty@rustcorp.com.au

c-lightning, Release v0.9.0-45-g723b722-modded

47.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

168 Chapter 47. lightning-txdiscard – Abandon a transaction from txprepare, release inputs

https://github.com/ElementsProject/lightning

CHAPTER 48

lightning-txprepare – Command to prepare to withdraw funds from the
internal wallet

48.1 SYNOPSIS

txprepare outputs [feerate] [minconf] [utxos]

48.2 DESCRIPTION

The txprepare RPC command creates an unsigned transaction which spends funds from c-lightning’s internal wallet
to the outputs specified in outputs.

The outputs is the array of output that include destination and amount({destination: amount}). Its format is like:
[{address1: amount1}, {address2: amount2}] or [{address: all}]. It supports any number of confirmed outputs.

The destination of output is the address which can be of any Bitcoin accepted type, including bech32.

The amount of output is the amount to be sent from the internal wallet (expressed, as name suggests, in amount). The
string all can be used to specify all available funds. Otherwise, it is in amount precision; it can be a whole number,
a whole number ending in sat, a whole number ending in 000msat, or a number with 1 to 8 decimal places ending in
btc.

feerate is an optional feerate to use. It can be one of the strings urgent (aim for next block), normal (next 4 blocks or
so) or slow (next 100 blocks or so) to use lightningd’s internal estimates: normal is the default.

Otherwise, feerate is a number, with an optional suffix: perkw means the number is interpreted as satoshi-per-kilosipa
(weight), and perkb means it is interpreted bitcoind-style as satoshi-per-kilobyte. Omitting the suffix is equivalent to
perkb.

minconf specifies the minimum number of confirmations that used outputs should have. Default is 1.

utxos specifies the utxos to be used to fund the transaction, as an array of “txid:vout”. These must be drawn from the
node’s available UTXO set.

169

c-lightning, Release v0.9.0-45-g723b722-modded

txprepare is similar to the first part of a withdraw command, but supports multiple outputs and uses outputs as
parameter. The second part is provided by txsend.

48.3 RETURN VALUE

On success, an object with attributes unsigned_tx and txid will be returned. You need to hand txid to txsend or
txdiscard, as the inputs of this transaction are reserved until then, or until the daemon restarts.

unsigned_tx represents the raw bitcoin transaction (not yet signed) and txid represent the bitcoin transaction id.

On failure, an error is reported and the transaction is not created.

The following error codes may occur:

• -1: Catchall nonspecific error.

• 301: There are not enough funds in the internal wallet (including fees) to create the transaction.

• 302: The dust limit is not met.

48.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

48.5 SEE ALSO

lightning-withdraw(7), lightning-txsend(7), lightning-txdiscard(7), lightning-feerates(7)

48.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

170Chapter 48. lightning-txprepare – Command to prepare to withdraw funds from the internal wallet

mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

CHAPTER 49

lightning-txsend – Command to sign and send transaction from txprepare

49.1 SYNOPSIS

txsend txid

49.2 DESCRIPTION

The txsend RPC command signs and broadcasts a transaction created by txprepare.

49.3 RETURN VALUE

On success, an object with attributes tx and txid will be returned.

tx represents the fully signed raw bitcoin transaction, and txid is the same as the txid argument.

On failure, an error is reported (from bitcoind), and the inputs from the transaction are unreserved.

The following error codes may occur:

• -1: Catchall nonspecific error.

49.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

49.5 SEE ALSO

lightning-txprepare(7), lightning-txdiscard(7)

171

mailto:rusty@rustcorp.com.au

c-lightning, Release v0.9.0-45-g723b722-modded

49.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

172 Chapter 49. lightning-txsend – Command to sign and send transaction from txprepare

https://github.com/ElementsProject/lightning

CHAPTER 50

lightning-unreserveinputs – Release reserved UTXOs

50.1 SYNOPSIS

unreserveinputs psbt

50.2 DESCRIPTION

The unreserveinputs RPC command releases (or reduces reservation) on UTXOs which were previously marked as
reserved, generally by lightning-reserveinputs(7).

The inputs to unreserve are the inputs specified in the passed-in psbt.

50.3 RETURN VALUE

On success, an reservations array is returned, with an entry for each input which was reserved:

• txid is the input transaction id.

• vout is the input index.

• was_reserved indicates whether the input was already reserved (generally true)

• reserved indicates that the input is now reserved (may still be true, if it was previously reserved for a long time).

• reserved_to_block (if reserved is still true) indicates what blockheight the reservation will expire.

On failure, an error is reported and no UTXOs are unreserved.

The following error codes may occur:

• -32602: Invalid parameter, i.e. an unparseable PSBT.

173

c-lightning, Release v0.9.0-45-g723b722-modded

50.4 AUTHOR

niftynei <niftynei@gmail.com> is mainly responsible.

50.5 SEE ALSO

lightning-unreserveinputs(7), lightning-signpsbt(7), lightning-sendpsbt(7)

50.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

174 Chapter 50. lightning-unreserveinputs – Release reserved UTXOs

mailto:niftynei@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 51

lightning-waitanyinvoice – Command for waiting for payments

51.1 SYNOPSIS

waitanyinvoice [lastpay_index] [timeout]

51.2 DESCRIPTION

The waitanyinvoice RPC command waits until an invoice is paid, then returns a single entry as per listinvoice. It will
not return for any invoices paid prior to or including the lastpay_index.

This is usually called iteratively: once with no arguments, then repeatedly with the returned pay_index entry. This
ensures that no paid invoice is missed.

The pay_index is a monotonically-increasing number assigned to an invoice when it gets paid. The first valid pay_index
is 1; specifying lastpay_index of 0 equivalent to not specifying a lastpay_index. Negative lastpay_index is invalid.

If timeout is specified, wait at most that number of seconds, which must be an integer. If the specified timeout
is reached, this command will return with an error. You can specify this to 0 so that waitanyinvoice will return
immediately with an error if no pending invoice is available yet. If unspecified, this command will wait indefinitely.

51.3 RETURN VALUE

On success, an invoice description will be returned as per lightning-listinvoice(7): complete will always be true.

Possible errors are:

• 1.

The timeout was reached without an invoice being paid.

175

c-lightning, Release v0.9.0-45-g723b722-modded

51.4 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> is mainly responsible.

51.5 SEE ALSO

lightning-waitinvoice(7), lightning-listinvoice(7), lightning-delinvoice(7), lightning-invoice(7).

51.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

176 Chapter 51. lightning-waitanyinvoice – Command for waiting for payments

mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

CHAPTER 52

lightning-waitblockheight – Command for waiting for blocks on the
blockchain

52.1 SYNOPSIS

waitblockheight blockheight [timeout]

52.2 DESCRIPTION

The waitblockheight RPC command waits until the blockchain has reached the specified blockheight. It will only
wait up to timeout seconds (default 60).

If the blockheight is a present or past block height, then this command returns immediately.

52.3 RETURN VALUE

Once the specified block height has been achieved by the blockchain, an object with the single field blockheight is
returned, which is the block height at the time the command returns.

If timeout seconds is reached without the specified blockheight being reached, this command will fail.

52.4 AUTHOR

ZmnSCPxj <ZmnSCPxj@protonmail.com> is mainly responsible.

177

mailto:ZmnSCPxj@protonmail.com

c-lightning, Release v0.9.0-45-g723b722-modded

52.5 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

178 Chapter 52. lightning-waitblockheight – Command for waiting for blocks on the blockchain

https://github.com/ElementsProject/lightning

CHAPTER 53

lightning-waitinvoice – Command for waiting for specific payment

53.1 SYNOPSIS

waitinvoice label

53.2 DESCRIPTION

The waitinvoice RPC command waits until a specific invoice is paid, then returns that single entry as per listinvoice.

53.3 RETURN VALUE

On success, an invoice description will be returned as per lightning-listinvoice(7). The status field will be paid.

On error the returned object will contain code and message properties, with code being one of the following:

• -32602: If the given parameters are wrong.

• -1: If the invoice is deleted while unpaid, or the invoice does not exist.

• 903: If the invoice expires before being paid, or is already expired.

53.4 AUTHOR

Christian Decker <decker.christian@gmail.com> is mainly responsible.

53.5 SEE ALSO

lightning-waitanyinvoice(7), lightning-listinvoice(7), lightning-delinvoice(7), lightning-invoice(7)

179

mailto:decker.christian@gmail.com

c-lightning, Release v0.9.0-45-g723b722-modded

53.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

180 Chapter 53. lightning-waitinvoice – Command for waiting for specific payment

https://github.com/ElementsProject/lightning

CHAPTER 54

lightning-waitsendpay – Command for sending a payment via a route

54.1 SYNOPSIS

waitsendpay payment_hash [timeout] [partid]

54.2 DESCRIPTION

The waitsendpay RPC command polls or waits for the status of an outgoing payment that was initiated by a previous
sendpay invocation.

The partid argument must match that of the sendpay command.

Optionally the client may provide a timeout, an integer in seconds, for this RPC command to return. If the timeout
is provided and the given amount of time passes without the payment definitely succeeding or definitely failing, this
command returns with a 200 error code (payment still in progress). If timeout is not provided this call will wait
indefinitely.

Indicating a timeout of 0 effectively makes this call a pollable query of the status of the payment.

If the payment completed with success, this command returns with success. Otherwise, if the payment completed with
failure, this command returns an error.

54.3 RETURN VALUE

On success, an object similar to the output of listsendpays will be returned. This object will have a status field that is
the string “complete”.

On error, and even if the error occurred from a node other than the final destination, the route table will no longer be
updated. Use the exclude parameter of the getroute command to ignore the failing route.

The following error codes may occur:

181

c-lightning, Release v0.9.0-45-g723b722-modded

• -1: Catchall nonspecific error.

• 200: Timed out before the payment could complete.

• 202: Unparseable onion reply. The data field of the error will have an onionreply field, a hex string representa-
tion of the raw onion reply.

• 203: Permanent failure at destination. The data field of the error will be routing failure object.

• 204: Failure along route; retry a different route. The data field of the error will be routing failure object.

• 208: A payment for payment_hash was never made and there is nothing to wait for.

• 209: The payment already failed, but the reason for failure was not stored. This should only occur when querying
failed payments on very old databases.

A routing failure object has the fields below:

• erring_index: The index of the node along the route that reported the error. 0 for the local node, 1 for the first
hop, and so on.

• erring_node: The hex string of the pubkey id of the node that reported the error.

• erring_channel: The short channel ID of the channel that has the error (or the final channel if the destination
raised the error).

• erring_direction: The direction of traversing the erring_channel:

• failcode: The failure code, as per BOLT #4.

• failcodename: The human-readable name corresponding to failcode, if known.

54.4 AUTHOR

ZmnSCPxj <ZmnSCPxj@protonmail.com> is mainly responsible.

54.5 SEE ALSO

lightning-sendpay(7), lightning-pay(7).

54.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

182 Chapter 54. lightning-waitsendpay – Command for sending a payment via a route

mailto:ZmnSCPxj@protonmail.com
https://github.com/ElementsProject/lightning

CHAPTER 55

lightning-withdraw – Command for withdrawing funds from the internal
wallet

55.1 SYNOPSIS

withdraw destination satoshi [feerate] [minconf] [utxos]

55.2 DESCRIPTION

The withdraw RPC command sends funds from c-lightning’s internal wallet to the address specified in destination.

The address can be of any Bitcoin accepted type, including bech32.

satoshi is the amount to be withdrawn from the internal wallet (expressed, as name suggests, in satoshi). The string
all can be used to specify withdrawal of all available funds. Otherwise, it is in satoshi precision; it can be a whole
number, a whole number ending in sat, a whole number ending in 000msat, or a number with 1 to 8 decimal places
ending in btc.

feerate is an optional feerate to use. It can be one of the strings urgent (aim for next block), normal (next 4 blocks or
so) or slow (next 100 blocks or so) to use lightningd’s internal estimates: normal is the default.

Otherwise, feerate is a number, with an optional suffix: perkw means the number is interpreted as satoshi-per-kilosipa
(weight), and perkb means it is interpreted bitcoind-style as satoshi-per-kilobyte. Omitting the suffix is equivalent to
perkb.

minconf specifies the minimum number of confirmations that used outputs should have. Default is 1.

utxos specifies the utxos to be used to be withdrawn from, as an array of “txid:vout”. These must be drawn from the
node’s available UTXO set.

183

c-lightning, Release v0.9.0-45-g723b722-modded

55.3 RETURN VALUE

On success, an object with attributes tx and txid will be returned.

tx represents the raw bitcoin, fully signed, transaction and txid represent the bitcoin transaction id.

On failure, an error is reported and the withdrawal transaction is not created.

The following error codes may occur:

• -1: Catchall nonspecific error.

• 301: There are not enough funds in the internal wallet (including fees) to create the transaction.

• 302: The dust limit is not met.

55.4 AUTHOR

Felix <fixone@gmail.com> is mainly responsible.

55.5 SEE ALSO

lightning-listfunds(7), lightning-fundchannel(7), lightning-newaddr(7), lightning-txprepare(7), lightning-feerates(7).

55.6 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

184 Chapter 55. lightning-withdraw – Command for withdrawing funds from the internal wallet

mailto:fixone@gmail.com
https://github.com/ElementsProject/lightning

CHAPTER 56

lightningd – Daemon for running a Lightning Network node

56.1 SYNOPSIS

lightningd [--conf=<config-file>] [OPTIONS]...

56.2 DESCRIPTION

lightningd starts the C-Lightning daemon, which implements a standards-compliant Lightning Network node.

56.3 CONFIGURATION OPTIONS

–conf=FILE Specify configuration file. If not an absolute path, will be relative from the lightning-dir location. Defaults
to config.

–lightning-dir=DIR Set the directory for the C-Lightning daemon. Defaults to $HOME/.lightning.

56.4 MORE OPTIONS

Command line options are mirrored as configuration options in the configuration file, so foo in the configuration file
simply becomes –foo on the command line, and foo=bar becomes –foo=bar.

See lightningd-config(5) for a comprehensive list of all available options.

185

c-lightning, Release v0.9.0-45-g723b722-modded

56.5 LOGGING AND COMMANDING C-LIGHTNING

By default, C-Lightning will log to the standard output. To log to a specific file, use –log-file=PATH. Sending SIGHUP
will cause C-Lightning to reopen this file, for example to do log rotation.

C-Lightning will set up a Unix domain socket for receiving commands. By default this will be the file lightning-rpc
in your specified lightning-dir. You can use lightning-cli(1) to send commands to C-Lightning once lightningd has
started; you need to match the –lightning-dir and –rpc-file options between them.

Commands for C-Lightning are described in various manpages in section 7, with the common prefix lightning-.

56.6 QUICK START

First, decide on and create a directory for lightning-dir, or just use the default $HOME/.lightning. Then create a config
file in this directory containing your configuration.

Your other main preparation would be to set up a mainnet Bitcoin fullnode, i.e. run a bitcoind(1) instance. The rest of
this quick start guide will assume you are reckless and want to spend real funds on Lightning. Indicate network=bitcoin
in your config file explicitly.

C-Lightning needs to communicate with the Bitcoin Core RPC. You can set this up using bitcoin-datadir, bitcoin-
rpcconnect, bitcoin-rpcport, bitcoin-rpcuser, and bitcoin-rpcpassword options in your config file.

Finally, just to keep yourself sane, decide on a log file name and indicate it using log-file=lightningd.log in your config
file. You might be interested in viewing it periodically as you follow along on this guide.

Once the bitcoind instance is running, start lightningd(8):

$ lightningd --lightning-dir=$HOME/.lightning --daemon

This starts lightningd in the background due to the –daemon option.

Check if things are working:

$ lightning-cli --lightning-dir=%HOME/.lightning help
$ lightning-cli --lightning-dir=%HOME/.lightning getinfo

The getinfo command in particular will return a blockheight field, which indicates the block height to which lightningd
has been synchronized to (this is separate from the block height that your bitcoind has been synchronized to, and will
always lag behind bitcoind). You will have to wait until the blockheight has reached the actual blockheight of the
Bitcoin network.

Before you can get funds offchain, you need to have some funds onchain owned by lightningd (which has a separate
wallet from the bitcoind it connects to). Get an address for lightningd via lightning-newaddr(7) command as below
(–lightning-dir option has been elided, specify it if you selected your own lightning-dir):

$ lightning-cli newaddr

This will provide a native SegWit bech32 address. In case all your money is in services that do not support native
SegWit and have to use P2SH-wrapped addresses, instead use:

$ lightning-cli newaddr p2sh-segwit

Transfer a small amount of onchain funds to the given address. Check the status of all your funds (onchain and
on-Lightning) via lightning-listfunds(7):

186 Chapter 56. lightningd – Daemon for running a Lightning Network node

c-lightning, Release v0.9.0-45-g723b722-modded

$ lightning-cli listfunds

Now you need to look for an arbitrary Lightning node to connect to, which you can do by using dig(1) and querying
lseed.bitcoinstats.com:

$ dig lseed.bitcoinstats.com A

This will give 25 IPv4 addresses, you can select any one of those. You will also need to learn the corresponding public
key, which you can determine by searching the IP addrss on https://1ml.com/ . The public key is a long hex string,
like so: 024772ee4fa461febcef09d5869e1238f932861f57be7a6633048514e3f56644a1. (this example public key is not
used as of this writing)

After determining a public key, use lightning-connect(7) to connect to that public key at that IP:

$ lightning-cli connect $PUBLICKEY $IP

Then open a channel to that node using lightning-fundchannel(7):

$ lightning-cli fundchannel $PUBLICKEY $SATOSHI

This will require that the funding transaction be confirmed before you can send funds over Lightning. To track this,
use lightning-listpeers(7) and look at the state of the channel:

$ lightning-cli listpeers $PUBLICKEY

The channel will initially start with a state of CHANNELD_AWAITING_LOCKIN. You need to wait for the channel
state to become CHANNELD_NORMAL, meaning the funding transaction has been confirmed deeply.

Once the channel state is CHANNELD_NORMAL, you can start paying merchants over Lightning. Acquire a Lightning
invoice from your favorite merchant, and use lightning-pay(7) to pay it:

$ lightning-cli pay $INVOICE

56.7 BUGS

You should report bugs on our github issues page, and maybe submit a fix to gain our eternal gratitude!

56.8 AUTHOR

ZmnSCPxj <ZmnSCPxj@protonmail.com> wrote the initial version of this man page, but many others did the hard
work of actually implementing a standards-compliant Lightning Network node implementation.

56.9 SEE ALSO

lightning-listconfigs(7), lightning-config(5), lightning-cli(1), lightning-newaddr(7), lightning-listfunds(7), lightning-
connect(7), lightning-fundchannel(7), lightning-listpeers(7), lightning-pay(7), lightning-hsmtool(8)

56.7. BUGS 187

https://1ml.com/
mailto:ZmnSCPxj@protonmail.com

c-lightning, Release v0.9.0-45-g723b722-modded

56.10 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

56.11 COPYING

Note: the modules in the ccan/ directory have their own licenses, but the rest of the code is covered by the BSD-style
MIT license.

188 Chapter 56. lightningd – Daemon for running a Lightning Network node

https://github.com/ElementsProject/lightning

CHAPTER 57

lightningd-config – Lightning daemon configuration file

57.1 SYNOPSIS

~/.lightning/config

57.2 DESCRIPTION

When lightningd(8) starts up it usually reads a general configuration file (default: $HOME/.lightning/config) then a
network-specific configuration file (default: $HOME/.lightning/testnet/config). This can be changed: see –conf and
–lightning-dir.

General configuration files are processed first, then network-specific ones, then command line options: later options
override earlier ones except addr options and log-level with subsystems, which accumulate.

*include * followed by a filename includes another configuration file at that point, relative to the current configuration
file.

All these options are mirrored as commandline arguments to lightningd(8), so –foo becomes simply foo in the config-
uration file, and –foo=bar becomes foo=bar in the configuration file.

Blank lines and lines beginning with # are ignored.

57.3 DEBUGGING

–help will show you the defaults for many options; they vary with network settings so you can specify –network before
–help to see the defaults for that network.

The lightning-listconfigs(7) command will output a valid configuration file using the current settings.

189

c-lightning, Release v0.9.0-45-g723b722-modded

57.4 OPTIONS

57.4.1 General options

allow-deprecated-apis=BOOL Enable deprecated options, JSONRPC commands, fields, etc. It defaults to true, but
you should set it to false when testing to ensure that an upgrade won’t break your configuration.

help Print help and exit. Not very useful inside a configuration file, but fun to put in other’s config files while their
computer is unattended.

version Print version and exit. Also useless inside a configuration file, but putting this in someone’s config file may
convince them to read this man page.

Bitcoin control options:

network=NETWORK Select the network parameters (bitcoin, testnet, or regtest). This is not valid within the per-
network configuration file.

testnet Alias for network=testnet.

signet Alias for network=signet.

mainnet Alias for network=bitcoin.

bitcoin-cli=PATH The name of bitcoin-cli executable to run.

bitcoin-datadir=DIR -datadir argument to supply to bitcoin-cli(1).

bitcoin-rpcuser=USER The RPC username for talking to bitcoind(1).

bitcoin-rpcpassword=PASSWORD The RPC password for talking to bitcoind(1).

bitcoin-rpcconnect=HOST The bitcoind(1) RPC host to connect to.

bitcoin-rpcport=PORT The bitcoind(1) RPC port to connect to.

bitcoin-retry-timeout=SECONDS Number of seconds to keep trying a bitcoin-cli(1) command. If the command
keeps failing after this time, exit with a fatal error.

rescan=BLOCKS Number of blocks to rescan from the current head, or absolute blockheight if negative. This is only
needed if something goes badly wrong.

57.4.2 Lightning daemon options

lightning-dir=DIR Sets the working directory. All files (except –conf and –lightning-dir on the command line) are
relative to this. This is only valid on the command-line, or in a configuration file specified by –conf.

subdaemon=SUBDAEMON:PATH Specifies an alternate subdaemon binary. Current subdaemons are channeld, clos-
ingd, connectd, gossipd, hsmd, onchaind, and openingd. If the supplied path is relative the subdaemon binary is found
in the working directory. This option may be specified multiple times.

So, subdaemon=hsmd:remote_signer would use a hypothetical remote signing proxy instead of the standard light-
ning_hsmd binary.

pid-file=PATH Specify pid file to write to.

log-level=LEVEL[:SUBSYSTEM] What log level to print out: options are io, debug, info, unusual, broken. If SUB-
SYSTEM is supplied, this sets the logging level for any subsystem containing that string. Subsystems include:

• lightningd: The main lightning daemon

• database: The database subsystem

190 Chapter 57. lightningd-config – Lightning daemon configuration file

c-lightning, Release v0.9.0-45-g723b722-modded

• wallet: The wallet subsystem

• gossipd: The gossip daemon

• plugin-manager: The plugin subsystem

• plugin-P: Each plugin, P = plugin path without directory

• hsmd: The secret-holding daemon

• connectd: The network connection daemon

• jsonrpc#FD: Each JSONRPC connection, FD = file descriptor number

The following subsystems exist for each channel, where N is an incrementing internal integer id assigned for
the lifetime of the channel:

• openingd-chan#N: Each opening / idling daemon

• channeld-chan#N: Each channel management daemon

• closingd-chan#N: Each closing negotiation daemon

• onchaind-chan#N: Each onchain close handling daemon

So, log-level=debug:plugin would set debug level logging on all plugins and the plugin manager. log-
level=io:chan#55 would set IO logging on channel number 55 (or 550, for that matter).

log-prefix=PREFIX Prefix for log lines: this can be customized if you want to merge logs with multiple daemons.

log-file=PATH Log to this file instead of stdout. Sending lightningd(8) SIGHUP will cause it to reopen this file (useful
for log rotation).

rpc-file=PATH Set JSON-RPC socket (or /dev/tty), such as for lightning-cli(1).

rpc-file-mode=MODE Set JSON-RPC socket file mode, as a 4-digit octal number. Default is 0600, meaning only the
user that launched lightningd can command it. Set to 0660 to allow users with the same group to access the RPC as
well.

daemon Run in the background, suppress stdout and stderr.

conf=PATH Sets configuration file, and disable reading the normal general and network ones. If this is a relative path,
it is relative to the starting directory, not lightning-dir (unlike other paths). PATH must exist and be readable (we
allow missing files in the default case). Using this inside a configuration file is invalid.

wallet=DSN Identify the location of the wallet. This is a fully qualified data source name, including a scheme such as
sqlite3 or postgres followed by the connection parameters.

The default wallet corresponds to the following DSN:

--wallet=sqlite3://$HOME/.lightning/bitcoin/lightningd.sqlite3

The following is an example of a postgresql wallet DSN:

--wallet=postgres://user:pass@localhost:5432/db_name

This will connect to a the DB server running on localhost port 5432, authenticate with username user and
password pass, and then use the database db_name. The database must exist, but the schema will be managed
automatically by lightningd.

encrypted-hsm If set, you will be prompted to enter a password used to encrypt the hsm_secret. Note that once
you encrypt the hsm_secret this option will be mandatory for lightningd to start. If there is no hsm_secret
yet, lightningd will create a new encrypted secret. If you have an unencrypted hsm_secret you want to encrypt
on-disk, or vice versa, see lightning-hsmtool(8).

57.4. OPTIONS 191

c-lightning, Release v0.9.0-45-g723b722-modded

57.4.3 Lightning node customization options

alias=NAME Up to 32 bytes of UTF-8 characters to tag your node. Completely silly, since anyone can call their
node anything they want. The default is an NSA-style codename derived from your public key, but “Peter Todd” and
“VAULTERO” are good options, too.

rgb=RRGGBB Your favorite color as a hex code.

fee-base=MILLISATOSHI Default: 1000. The base fee to charge for every payment which passes through. Note that
millisatoshis are a very, very small unit! Changing this value will only affect new channels and not existing ones. If
you want to change fees for existing channels, use the RPC call lightning-setchannelfee(7).

fee-per-satoshi=MILLIONTHS Default: 10 (0.001%). This is the proportional fee to charge for every payment which
passes through. As percentages are too coarse, it’s in millionths, so 10000 is 1%, 1000 is 0.1%. Changing this value
will only affect new channels and not existing ones. If you want to change fees for existing channels, use the RPC call
lightning-setchannelfee(7).

min-capacity-sat=SATOSHI Default: 10000. This value defines the minimal effective channel capacity in satoshi to
accept for channel opening requests. If a peer tries to open a channel smaller than this, the opening will be rejected.

ignore-fee-limits=BOOL Allow nodes which establish channels to us to set any fee they want. This may result in a
channel which cannot be closed, should fees increase, but make channels far more reliable since we never close it due
to unreasonable fees.

commit-time=MILLISECONDS How long to wait before sending commitment messages to the peer: in theory in-
creasing this would reduce load, but your node would have to be extremely busy node for you to even notice.

57.4.4 Lightning channel and HTLC options

large-channels Removes capacity limits for channel creation. Version 1.0 of the specification limited channel sizes to
16777215 satoshi. With this option (which your node will advertize to peers), your node will accept larger incoming
channels and if the peer supports it, will open larger channels. Note: this option is spelled large-channels but it’s
pronounced wumbo.

watchtime-blocks=BLOCKS How long we need to spot an outdated close attempt: on opening a channel we tell our
peer that this is how long they’ll have to wait if they perform a unilateral close.

max-locktime-blocks=BLOCKS The longest our funds can be delayed (ie. the longest watchtime-blocks our peer
can ask for, and also the longest HTLC timeout we will accept). If our peer asks for longer, we’ll refuse to create a
channel, and if an HTLC asks for longer, we’ll refuse it.

funding-confirms=BLOCKS Confirmations required for the funding transaction when the other side opens a channel
before the channel is usable.

commit-fee=PERCENT The percentage of estimatesmartfee 2/CONSERVATIVE to use for the commitment transac-
tions: default is 100.

commit-fee-min=PERCENT commit-fee-max=PERCENT Limits on what onchain fee range we’ll allow when a node
opens a channel with us, as a percentage of estimatesmartfee 2. If they’re outside this range, we abort their opening
attempt. Note that commit-fee-max can (should!) be greater than 100.

max-concurrent-htlcs=INTEGER Number of HTLCs one channel can handle concurrently in each direction. Should
be between 1 and 483 (default 30).

cltv-delta=BLOCKS The number of blocks between incoming payments and outgoing payments: this needs to be
enough to make sure that if we have to, we can close the outgoing payment before the incoming, or redeem the
incoming once the outgoing is redeemed.

cltv-final=BLOCKS The number of blocks to allow for payments we receive: if we have to, we might need to redeem
this on-chain, so this is the number of blocks we have to do that.

192 Chapter 57. lightningd-config – Lightning daemon configuration file

c-lightning, Release v0.9.0-45-g723b722-modded

Invoice control options:

autocleaninvoice-cycle=SECONDS Perform cleanup of expired invoices every SECONDS seconds, or disable if 0.
Usually unpaid expired invoices are uninteresting, and just take up space in the database.

autocleaninvoice-expired-by=SECONDS Control how long invoices must have been expired before they are cleaned
(if autocleaninvoice-cycle is non-zero).

Payment control options:

disable-mpp Disable the multi-part payment sending support in the pay plugin. By default the MPP support is
enabled, but it can be desirable to disable in situations in which each payment should result in a single HTLC being
forwarded in the network.

57.4.5 Networking options

Note that for simple setups, the implicit autolisten option does the right thing: it will try to bind to port 9735 on IPv4
and IPv6, and will announce it to peers if it seems like a public address.

You can instead use addr to override this (eg. to change the port), or precisely control where to bind and what
to announce with the bind-addr and announce-addr options. These will disable the autolisten logic, so you must
specifiy exactly what you want!

addr=[IPADDRESS[:PORT]]|autotor:TORIPADDRESS[:SERVICEPORT][/torport=TORPORT]|statictor:TORIPADDRESS[:SERVICEPORT][/torport=TORPORT][/torblob=[blob]]

Set an IP address (v4 or v6) or automatic Tor address to listen on and (maybe) announce as our node address.

An empty ‘IPADDRESS’ is a special value meaning bind to IPv4 and/or IPv6 on all interfaces, ‘0.0.0.0’ means bind
to all IPv4 interfaces, ‘::’ means ‘bind to all IPv6 interfaces’. If ‘PORT’ is not specified, 9735 is used. If we can
determine a public IP address from the resulting binding, the address is announced.

If the argument begins with ‘autotor:’ then it is followed by the IPv4 or IPv6 address of the Tor control port (default
port 9051), and this will be used to configure a Tor hidden service for port 9735. The Tor hidden service will be
configured to point to the first IPv4 or IPv6 address we bind to.

If the argument begins with ‘statictor:’ then it is followed by the IPv4 or IPv6 address of the Tor control port (default
port 9051), and this will be used to configure a static Tor hidden service for port 9735. The Tor hidden service will
be configured to point to the first IPv4 or IPv6 address we bind to and is by default unique to your nodes id. You can
add the text ‘/torblob=BLOB’ followed by up to 64 Bytes of text to generate from this text a v3 onion service address
text unique to the first 32 Byte of this text. You can also use an postfix ‘/torport=TORPORT’ to select the external tor
binding. The result is that over tor your node is accessible by a port defined by you and possible different from your
local node port assignment

This option can be used multiple times to add more addresses, and its use disables autolisten. If necessary, and
‘always-use-proxy’ is not specified, a DNS lookup may be done to resolve ‘IPADDRESS’ or ‘TORIPADDRESS’.

bind-addr=[IPADDRESS[:PORT]]|SOCKETPATH Set an IP address or UNIX domain socket to listen to, but do not
announce. A UNIX domain socket is distinguished from an IP address by beginning with a /.

An empty ‘IPADDRESS’ is a special value meaning bind to IPv4 and/or IPv6 on all interfaces, ‘0.0.0.0’ means bind
to all IPv4 interfaces, ‘::’ means ‘bind to all IPv6 interfaces’. ‘PORT’ is not specified, 9735 is used.

This option can be used multiple times to add more addresses, and its use disables autolisten. If necessary, and
‘always-use-proxy’ is not specified, a DNS lookup may be done to resolve ‘IPADDRESS’.

announce-addr=IPADDRESS[:PORT]|TORADDRESS.onion[:PORT] Set an IP (v4 or v6) address or Tor address to
announce; a Tor address is distinguished by ending in .onion. PORT defaults to 9735.

Empty or wildcard IPv4 and IPv6 addresses don’t make sense here. Also, unlike the ‘addr’ option, there is no checking
that your announced addresses are public (e.g. not localhost).

This option can be used multiple times to add more addresses, and its use disables autolisten.

57.4. OPTIONS 193

c-lightning, Release v0.9.0-45-g723b722-modded

If necessary, and ‘always-use-proxy’ is not specified, a DNS lookup may be done to resolve ‘IPADDRESS’.

offline Do not bind to any ports, and do not try to reconnect to any peers. This can be useful for maintenance and
forensics, so is usually specified on the command line. Overrides all addr and bind-addr options.

autolisten=BOOL By default, we bind (and maybe announce) on IPv4 and IPv6 interfaces if no addr, bind-addr or
announce-addr options are specified. Setting this to false disables that.

proxy=IPADDRESS[:PORT] Set a socks proxy to use to connect to Tor nodes (or for all connections if always-use-
proxy is set).

always-use-proxy=BOOL Always use the proxy, even to connect to normal IP addresses (you can still connect to
Unix domain sockets manually). This also disables all DNS lookups, to avoid leaking information.

disable-dns Disable the DNS bootstrapping mechanism to find a node by its node ID.

enable-autotor-v2-mode Try to get a v2 onion address from the Tor service call, default is v3.

tor-service-password=PASSWORD Set a Tor control password, which may be needed for autotor: to authenticate to
the Tor control port.

57.4.6 Lightning Plugins

lightningd(8) supports plugins, which offer additional configuration options and JSON-RPC methods, depending on
the plugin. Some are supplied by default (usually located in libexec/c-lightning/plugins/). If a plugins directory exists
under lightning-dir that is searched for plugins along with any immediate subdirectories). You can specify additional
paths too:

plugin=PATH Specify a plugin to run as part of c-lightning. This can be specified multiple times to add multiple
plugins.

plugin-dir=DIRECTORY Specify a directory to look for plugins; all executable files not containing punctuation (other
than ., - or _) in ‘DIRECTORY are loaded. DIRECTORY must exist; this can be specified multiple times to add multiple
directories.

clear-plugins This option clears all plugin, important-plugin, and plugin-dir options preceeding it, including the
default built-in plugin directory. You can still add plugin-dir, plugin, and important-plugin options following this and
they will have the normal effect.

disable-plugin=PLUGIN If PLUGIN contains a /, plugins with the same path as PLUGIN will not be loaded at startup.
Otherwise, no plugin with that base name will be loaded at startup, whatever directory it is in. This option is useful
for disabling a single plugin inside a directory. You can still explicitly load plugins which have been disabled, using
lightning-plugin(7) start.

important-plugin=PLUGIN Speciy a plugin to run as part of C-lightning. This can be specified multiple times to
add multiple plugins. Plugins specified via this option are considered so important, that if the plugin stops for any
reason (including via lightning-plugin(7) stop), C-lightning will also stop running. This way, you can monitor
crashes of important plugins by simply monitoring if C-lightning terminates. Built-in plugins, which are installed with
lightningd(8), are automatically considered important.

57.5 BUGS

You should report bugs on our github issues page, and maybe submit a fix to gain our eternal gratitude!

194 Chapter 57. lightningd-config – Lightning daemon configuration file

c-lightning, Release v0.9.0-45-g723b722-modded

57.6 AUTHOR

Rusty Russell <rusty@rustcorp.com.au> wrote this man page, and much of the configuration language, but many
others did the hard work of actually implementing these options.

57.7 SEE ALSO

lightning-listconfigs(7) lightning-setchannelfee(7) lightningd(8) lightning-hsmtool(8)

57.8 RESOURCES

Main web site: https://github.com/ElementsProject/lightning

57.9 COPYING

Note: the modules in the ccan/ directory have their own licenses, but the rest of the code is covered by the BSD-style
MIT license.

57.6. AUTHOR 195

mailto:rusty@rustcorp.com.au
https://github.com/ElementsProject/lightning

	Install
	Setting up TOR with c-lightning
	FAQ
	Plugins
	Hacking
	Care And Feeding of Your Fellow Coders
	Release checklist
	Changelog
	lightning-autocleaninvoice – Set up auto-delete of expired invoice
	lightning-check – Command for verifying parameters
	lightning-checkmessage – Command to check a signature is from a node
	lightning-cli – Control lightning daemon
	lightning-close – Command for closing channels with direct peers
	lightning-connect – Command for connecting to another lightning node
	lightning-createonion – Low-level command to create a custom onion
	lightning-decodepay – Command for decoding a bolt11 string (low-level)
	lightning-delexpiredinvoice – Command for removing expired invoices
	lightning-delinvoice – Command for removing an invoice
	lightning-dev-sendcustommsg – Low-level interface to send protocol messages to peers
	lightning-disconnect – Command for disconnecting from another lightning node
	lightning-feerates – Command for querying recommended onchain feerates
	lightning-fundchannel – Command for establishing a lightning channel
	lightning-fundchannel_cancel – Command for completing channel establishment
	lightning-fundchannel_complete – Command for completing channel establishment
	lightning-fundchannel_start – Command for initiating channel establishment for a lightning channel
	lightning-fundpsbt – Command to populate PSBT inputs from the wallet
	lightning-getroute – Command for routing a payment (low-level)
	lightning-getsharedsecret – Command for computing an ECDH
	lightning-hsmtool – Tool for working with software HSM secrets of lightningd
	lightning-invoice – Command for accepting payments
	lightning-keysend – Send funds to a node without an invoice
	lightning-listchannels – Command to query active lightning channels in the entire network
	lightning-listforwards – Command showing all htlcs and their information
	lightning-listfunds – Command showing all funds currently managed by the c-lightning node
	lightning-listinvoices – Command for querying invoice status
	lightning-listpays – Command for querying payment status
	lightning-listpeers – Command returning data on connected lightning nodes
	lightning-listsendpays – Low-level command for querying sendpay status
	lightning-newaddr – Command for generating a new address to be used by c-lightning
	lightning-pay – Command for sending a payment to a BOLT11 invoice
	lightning-plugin – Manage plugins with RPC
	lightning-reserveinputs – Construct a transaction and reserve the UTXOs it spends
	lightning-sendonion – Send a payment with a custom onion packet
	lightning-sendpay – Low-level command for sending a payment via a route
	lightning-setchannelfee – Command for setting specific routing fees on a lightning channel
	lightning-signmessage – Command to create a signature from this node
	lightning-txdiscard – Abandon a transaction from txprepare, release inputs
	lightning-txprepare – Command to prepare to withdraw funds from the internal wallet
	lightning-txsend – Command to sign and send transaction from txprepare
	lightning-unreserveinputs – Release reserved UTXOs
	lightning-waitanyinvoice – Command for waiting for payments
	lightning-waitblockheight – Command for waiting for blocks on the blockchain
	lightning-waitinvoice – Command for waiting for specific payment
	lightning-waitsendpay – Command for sending a payment via a route
	lightning-withdraw – Command for withdrawing funds from the internal wallet
	lightningd – Daemon for running a Lightning Network node
	lightningd-config – Lightning daemon configuration file

